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sidered the most difficult branch of the pure Mathematics.
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PREF ACE.

TUE Differential and Integral Calculus is justly con-

sidered the most difficult branch of the pure Mathematics.

The methods of investigation are, in general, not as

obvious, nor the connection between the reasoning and

the results so clear and striking, as in Geometry, or in

the elementary branches of analysis.

It has been the intention, however, to render the sub.

ject as plain as the nature of it would admit, but still,

it cannot be mastered without patient and severe study.

This work is what its title imports, an Elementary

Treatise on the Differential and Integral Calculus. It

might have been much enlarged, but being intended for

a text-book, it was not thought best to extend it beyond

its present limits.



4 PREFACE.

The works of Boucharlst and Lacroix have been

freely used, although the general method of arranging

the subjects is quite different from that adopted by

either of those distinguished authors.

)

MILl TART A.CADEMY,

West Point, October,1836.
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DIFFERENTIAL CALCUL US.

CHAPTER I.

Definitions and Introductory Remarks.

I. There arc two kinds of quantities which enter into
the Differential Calculus: variables and constants.

The variahle quantities arc generally designated by the
final l~ters of the alphabet, x, y, z, &c.; and any values
may b~ attributed to them which will satisfy the equations
ill which they enter. ..

The constant qllantitie:; arc designated by the first
letters of the alphabet, a, h, c, &c.; and these preserve
the same vallie throughout the same investigation, what-
ever values lIlay he attributed to the variables with which

they are connected.
2. If two variahle quantities arc so connected together

that any change ill the value of the one will necessarily
produGc a change in the value of the other, they are said
to be junctions of eucli other,

Thus, ill the equation of a given straight line

y=ax+b,
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if we change the value of the ordinate y, the value of a:

will abo undergo a change: hence, y is a function of x,
or tc a function of y.

This gcncral relation, which merely implies a depen-
deuce of value, is expressed by

I

J-
y = F(x'), or, x'=F(y);

and the equations arc read, y a function of x, and a: a
function of y. This dependence of value lllay abo be
expressed by the equation

Ft», y) = 0,

which is read, function of tc, y, equal to 0, und merely
implies, tint .c depends for its value on y, or y 011 :1',

3, The letter which is placed in the first incmhcr of the
equation is called the f"llerton, and the ouc ill tho second
member is called the variable. In the equation

~~'

y = F(:1'),

y is the function and x' the variahle, and in the equation

x = F(y),

x is the function and y the variable.
4. In the equation of the straight line

y = ax+ b,

it is plain that if the value of J: is increased the value of
y will also increase, or if x be diminished the value of !I
will diminish: hence, y and a: increase together, or de-
crease together, and y is then said to be an increasing
function of the variable a:

J

J
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DIFFERENTIAL CALCULUS. 11

In the equation of the circle

or

the value of y increases when .c is diminished, and de-
creases when x is augmented: when this relation subsists
between y and :1', y is said to be a decreasing function;
of the variable :r.

5. If ill any equation of the form

the value IIf _II IS expressed III terms of x and con-
~I<lilts, as for example, if

1/ au:', Of

y is then s:,id to he <III e:JiJlicil [unction of .r,
BilL if III(' value of the function is IH,t diru·t1y expr('.~.,,~d

ill t('\"IIl'i of t11t~ varial,le Oil which it Ihp"lltls, as ill the

cqllatioJl

or if the d'~pClld"II(," I"; expressed by means of all inter-
medial<: varialtk, as ill the equations

F(II ),

_II j,.; tiL"1I s:lid til I", :L11{1II1i/wi/ or illlplicd Iunct ion IIC:r.

'I'h« r(loh "I' all '·,[lIa1.ioll, for cx.uuplc, arc implicit func-
tions of tI,,: c:()etIici(~1l1,.;.

(i ]lL cv,:ry cll'latioll of till: form

y = ].'(:1'),

either the function y, or the variable :/', lIlay be I\l~lde to
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change its value according to any law whatever, and the

corresponding change which takes place in the other, will

be determined hy resolving rlw equation. Thus, in the

equation of the circle

if we change the value of either :r. or 1/ hy a lplantit.y
± It, the corresponding value of the other variable lllay he

determined from the equatioll, ;~lId the difference hl~tw('en

it and the primitive value, will express the chaJige of

value.
The law of change is generally imposed on llw varinl.lc

x, and as this law is arbitrary, :1" is called all im{"jJl'/Idl:lI1

carial.lr.
ft simplifies the operations of till: calculus, to illlT(';I~C or

diminish the vuriahl« :r uniformly; that is, to challge it
from one state of value to .uiothcr hy tIll: additioll or Sill>.

traction of a r.onstunt quautitv ; and sillce tIl(: law of

change is arbitrary, Ulis ~lIjlpositi(ln does not render tho

calculus less general.

7. Altho\lgh the values of th() variahle qllalltitil's lllay I,,:
changed at plcusur« without affecting thl' values of t1w
constants with which t1wy an) connected, there is, never-

thcless, a relation l)('lwCCIl them which it. is important to

consider.
If in the equation

1/ = 1-'(:1'),

a particular value be attributed either to ,r, or 1j, the other

will he expressed in terms of this value and the constant

quantities which enter into the primitive equation. Thus,
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in the equation of the straight line

y=ax+b,

if a particular value he attributed to x, the corresponding
value of !I will depclld on a and b ; or if a particular
value be nuributcd to !/' the corresponding value of it' will
likcwi-«. d(~p(~lIdOil rt alld I), The same will evidently be

the ca:«: ill tl«: (,ljuatioll of the circle

y :c= F(:!'),

I fClIc(', we S!~(~ that., alth(Jllg'!J the c!{(mgl's wliicl. take
I'la(',' ill t.Iw v;dw,,, of' t.11<~variables are (,lItindy indcpcn-

(kill. "I' tlw (',"lIs1;llltS with which the variabl(~s arc COH-

Ill,ct,'d, yt:t the ul).\"III/!; V;t1l1l~S are depclldallt Oil the

const.utt».

..

H. :--iillcc tl){\ rclat ions Lr.t.wccn the variables and con-

stant:; ;1I'l~ 1I"t. :df"l'ted hv the ('hang(~s of value which the

\'ari;tld(~s 11I;IY 1~\pnICIIC", it. follows that, if the constants
be dt:\crtllincd for particltlar values of the vuriublcs, they
will b(: k uowu for all otlu.ts.

Thus, in the equation of the: circle

i, if we make a: = 0, we have

y=±R;

or if we make y = 0, we have

x=±R,
2
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and the value c,r l; \\ ill I.,' "'pd 10 the di~tanec from tile

origin td the 1'1)1111III 1\11:l'l1 ;11': ('ir"llllIi',:n:llce Cillo the co-

ordinate axes, w!t;ILcvu In: ljw v.rlu.: ui' :1' or y.

9. '1'111: fuuction I;' ;11:,] 1h<: 1':lriald,: :1', lllay he so re-

lated til cal'll ollieI' ;,~ to I'l'dllCC tn () <it the :-;a IIII: time.

Thu~, ill t lu: c'I":tti()1l "I" II,,, j':'l'ail,,\a

F("',Ij)" 0, O[

if make (l \VC inI": .'I 0, or 'I' I\' \' Illake:we :1' - , II

1) = 0, \\'C ;;hall huv.. ,'J.' O.
10. '\\'c h::\I' 1!11I:; itl' ~lij'j>I'~I'd IL" fill:l'ljo'l 1:J tl"P'llid

on a silll!;k V;U']II!,j,,; il Ill:'\, hOWl''.'!, <11'1"'111\ Oil ""'I,(;l'al.

Let us SIIj'jl"SC i'or (;\"II!1 til-d, II (j"l)i'lid,~ lor it:; value

Oil ;1', y, alld z, \VI: I:'-j!l'I':':: til:" d"P"!ld':!lI'c l,y

/I Fl.', 1/, z,)

If we make x = 0, we have

1l Fry, z) ;

if we also make y 0, \1'(1 have

11 F(:::);

and if 111 nddition, we inak« z >: 0, we have

11' (/. ionstanl.,

which constant, lllay itself ],(1 eqllal to O.

11. Let us now exami,,(~ thp changn which takes place
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"Ill the function lor allY cll:tll!.';(! that Jllay be made 111 the

value of the v.uiuhlc Oil which it tic[ .cruls,

Let 1I,; take, as it li!"s!. ('xaltljde,

"
II (,!:l:",

'111.1:;III'PIJ.-:(! .r. t." hi! illcr(!a~l!d hy ;lIIY lj\liwl.il.y It. De-

,i:';II;t1i' I,V 1/ IIii' II!'\Y vuhu: wlll<'lIl( il~~lllllC", under this

""i'jlii.:ili,'il, ill.d \\(: ~hilll !JiIVl:

1/,' II (;': j- //.)\

I r we :"lhll:lll 111<: Iii:;!. (,Ijllatioll [rom the last, we shall
h;IVC

/1.' -- u.:.: '21/.:";1, + (/1/ ;

hell,',', ir tIl<: \arla!>lc :/' 1)(: ilJ("n:,lscd hy li, the function

\\ ill I)I! illl'l";'as('d hy :!.(U,j, Ifl/,".
If ""tit nWllIlwrs of 1.1\(: las!. c'jllation he divided by h;

WI! "llil:1 ],il\'(:

u' _. it.
.. _- '21/:1: 1,-1111, (I)

Ii.

which nprr!ssl!:; tile ratio (if till! iIIl'ITIII(!llt. of the [unction

t.o t.hal. or lit(! variilhlt!.

1 '2. Till' vnlu« (If 111(!ratio of 1111!iIHT1!IIWllt. of the func-

tion to t.hat. of the v.ui.rb lo is COlli posed of two part.s, 211X

lind II". If lIOW, WC SIlPpOSI! It 10 di miuish continually, the

value of t.it(! ratio will ;I]lpro;tclt to tilat. of '211:1:, to which

it will hccoiuc (~qllal whou Ii. O. TII(~ part 2a:r, which

is ill<icpcndl!ll1. of It, i" 1I11:rcfo["c tIle limit of the ratio of
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the increment of the Iunctiou to that of the variable, ami is

called the (/Ijji:rcnt/al C()(jFClclil of u, rcgarded as a func-

tion of ic. The tcrui, limll (!l lite rati«, designates the

ratio at the time It pa"sc:; [rom its lu-t value to 0,

If we dc~ignale by del: the last va hn: (If h, tllilt is, ilud
ualue 1.1)/ticlt cannot /,C (lilflilli,l'/tni unt luiu: /)I'Com/llp, 0, alld

by d.u. the corresponding v.rluc uf u' - u, WI: shall have

= '2a:l:,
dL'

('2)

The letter d is used nicrclv as a charadnist ic, alld t.hc

cxprcssi(JIls du, d.c, arc rend, dillcrcnu.rl or II, <lj/;'(I'III;II/

of J.',

l t lll:IY h(~ dilliclilt. til 1I1111.. rstalld wliv the v;J!;w whir.h It
assumes III passing 1'],11111 (,(jllation (I) III 1"III:tt.i"ll (~!),I.~ rc-

presented hy d,,' ill tI](: lirsL Illcllllwr, alld trladl: '''111:11 til 0

in tho "ccolld. We have rCl'reselited I,y tl.» 11](: /1/.1'/ v.rlu«

of Jr, ,(1111 this value f"rlJls III) al'l,r""I:lhlc 1';'1'1, "I' /, 1'1' ,I',

For, if it. wcr« a Iiuit .. qll;Ullity, It. IlIi~ld I,,; dlillillislwd wit h-
(Jilt iWl.'lIlllill"; 0, <Jlld 1h(:I'I' I'01'1: \\()IJi,1 1101. I", Li,,, /u.\/ val;",

of h, By dcsl~llatill!..\ this i:ISI. "<lllll: I)y d,I', \\(; 1;('SCJ'\'C it

trace (Of the I<-lt(:1' :1', alld C\I'J"'~·~ ,d. till: S,UlII: t:lll(: tllC

last ch;u:[!;I: wllicl! takes pl<t(;(: III Ii, as 11.hCCilIIIC', e'l'lal

to u.

13. LtL us take as a Hl:COlld Gxamplc,

If we giv(: to U.' all iIlC['i;lIleliL Ii, we Hhall have

hence, '1/ - Il = :.I (jh:c~ + :3aJ/':J' + uht,
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lind the ratio of the illC[(~mcllts wi il be

u' -- U • ., ..' ' t 72______= .lax" + .luv;r + ai,
It

and the limit of the ratio, or diJFerential coe.fficient,
du,_.. .2- L ... ,lU.1••
(X

In the function

the dilfmential coefficient is

_rIu c.:::: 4 n.il•
d»:

H. \Ve have seen, in the preceding examples, that the
Iliil'erential cocHici()nt, or limit of the ratio of the increment

of the function to that of the variable, is entirely indepen-

dent of the increment attrilmted to the variable.
\ Vc now propose to show that the same is true for any

fl 11lCt ion whatever.
EVI'ry relatioll between a function u and a variable x,

expressed by the cCjuation

II :c-.:: F(:I'),

will suhsist between the ordinate and abscissa of a curve.

For, let A_ be the

origiu of the rcetangll-

lar <lXI'S, 11X, 11 Y.

I n the equation

'U = F(.7~),

make x = 0, which

will give

• u = a constant:



p.
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layoff ;I II equal to

tlli,., C()II~tant. ,(,1!Cn

uu rib.uc values to x,
Irom 0 to any limit,
.rs wr.Il ncgall vc as

positi vc, and find from

the equation

'U = F(:r),

.he corresponding values of u, Conceive the values of x
o be laid off on the axis of abscissas, and the values

.f 'U on the corresponding ordinates. The curve descrijwti

hrough the extremities of the ordinates will have for its

)(luatiull

I
I

u -- F(x). (1)

15. Let ;L' rcpn:scnt allY ahscissa, All [or example,

mil 'll the corresponding ordillal.l: lIP,
If now WI~ g-iv,) to :t' allY arbitrary increment h, and

nakc IIF = It, tlw value of u will heCOllll: cquul to Fe,
which we will designate],y 'Il', We shall then have

Uut FCc -I- It).- lfFI CD, and 11J> = 1.l == F(a.-),

u' = F(:r -I- h).

Now, for a given value of li, en will vary if P be

uovcd along the: CIIl'VC: hcnr:«, Cl') will depend for its

.uluc on :/,' alld li, an.l we shod I have

CD = opt (:r, It):

he notation, F', P', &c., designating new, or different

unctions of .c.



u' - u =p' (;1', Ii) h. (:l)

])1JlJII':llI';WI'I,1L C.I I.C{lI.[;~. 1!)

But since Cl) becotrll~S 0, when /1 0, It must he a

factor of the second lIlellllJer of the ('(Illation, aiul we may

therefore \V rite,

llellee,

CD = FI! (:.1', h)/t.

u' =.- F(:r + It) = 1'(:1') + F" (:,r, h)/r, (2)

and transposillg F(:r) u, W(~ ba vc

But siuce u' - u c= CI) =" tallg Cl'D, It, we have

Il-l1 tallg Cl'j).h= ]."'(:L',h)h:

hence,
11' - 11 -=~tang Cl'f) == pi (.», Ii). (1)

If now we slippose Ii. to diminish COlltinllally, the point

C will ;q)pr(jach the point i', til(' allgk L'j'f) will be-
C()I11(~ ncur«r and Il('an'r cqll;i\ to the allgle F'J'lI, which

the tallgent. lin« forlilS with tiI" axis (If abscissa:;. If we

pass to the limit of the ratio, we shall have

~11~::.~ tang j''J'JI= /<,If'(:1'); (5)ax
and it rnnuri liS to show that, this differelltial cocfEciellt IS

IIHkpClldcllt or h..
To pro\'!' this, WI' will oh"nvl', that w!Ial.l,vn \';(IIIC way

be attrilJllted to It, a "n':lll!. :il!c, ;l ,'(', r.an always be
drawn thro\lgh I' alld till' l'xln'lllily or th« corresponding
ordinutc. The ratio of t.lu: illl'rCIII(,llts of the ordillate and

abscissa may then be (:'\pn'ss(~d "y the t.aW;I'llt of the an-

gIe C['f); nlHl since ally sec,tIIt will IWl'.OIlW the tangent

PT, when we pass to the limit, it follows that, tlie limit

-
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oj the ratio which is represented by lite tangent of the
angle PTH, is iruleperolcut 11' the increment h.

When, therefore, we pass from equation (1) which

expresses the ratio of the increment of the function to that

of the variable, to equation (5) which expresses the limit of
that ratio, the second mcml.er of e<1nation (-1) 1lI11~t be

made independent (If It, which is dune by making It :: 0;

awl since the second member itself do<:s n«t become 0, it

follows that there is at least one term in F'fCr, /I) which

docs not contain It.
If then, we divide the second mcmhcr of equation (-1)

into two parts, one independent uf h, alld the other COJl-

taining It as a factor, it Illay be written under the furm

pi (.T, It) =pl/(:I') +FIV
(:)', h)h.

Substituting this valuc of FII (J~, Ii) in equation (2),
we obtain

u' = F(x) + Fill (:r:) It + FlV(x, h)/t2,

or by omitting a part of the accents,

u'=u+P(J:)h+F'f(J?,h)F (0)

Henee, also,
ul-u

It
= P(x) + F"!», h)h, (7)

and by passing to the limit

_!!!!_ = P(x). (8)
fix

16. Let us now resume the discussion of equation (n),

u'= u+ .P(:I')h + Fi/(:L', h)h2
, (9)
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This equatioJl (~xprcsses the rclatior: which eXIsts be-

tween the prilllitive function 'II, and the new vahle u'
which it. a~SIIIrl(~S, \Vl)(~ll all increment It is attributed to

the varial,]e:r. \V,: see that the Hew value of the func-

tiou i" cOII,poscd or (llr!~c parts.
l st, 'I'ho l'rililiLiv,~ Iuuctiou u,
:2.1. A fllildioll or :t: JJlldtipli(~d by the lir"t power of the

iIICf('llli'llt. II.
:1.1. A 1'11111'1illil of :r alld II, multiplied hy the second

pl)wer of 11)(: ilH>;'clllI'llt ,',.

\\,,, Iliay abo rClllark that, Ihe ('(w(jicil'lIl. ,I h tn. the

SI'('I)II'/ /"(//1, is 1111' difli'/"(,nlllli ('wi/ie/I'llt I~/ tlu: function

I"~ I//II! Ihlll 1111' II'In! irrtu. ioili nanisl: '/.nltl'll we FliSS to the

[imi]. I)/, /11.111,:,' h o.
III "Itin to rl)ll(ier the Iorru of the cqu.uiou as simple as

»",siLI", "'I II:, 111:11,,)

I' , }'I/ (:r, It) -= pi ;

Ihe ('\jIl;l1i()11 will, tl)()11 h(~c()llw

or, 'Ill-a j'l!. I 1)1I?

Th(: c()()l1ici':IIL I' is ill g()lH'r;d a function of II', yet the

n'Ia!',>!1 1"'11\1'1'11 '/( ;[11(1 II' 11I;,y 1)(: suciJ as to make l' it

cOlIst.;L1I1,'1'l:lIltiLy, ill w hirh cas,~ /11 will be 0, or the

relation IIlay \)(: "licit as 10 relld,,!' l" cunstaut , These
eases will be illtlslratt:d Ily till' examples.

17. H we Lake eqll;lt.ioll (H), which is
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and multiply both members by d», we have

du =Pdx:

hence, the differential of a function is equal to its dif-
ferential coefficient multiplied by the differential of the
variable.

18. The differential of the function may also be ex-
pressed under another form. For, if we multiply both
members of the equation

du
dx =F(x)=P,

by da, and omit to cancel d» in the first member, we shall
have

du
-d dx = P dx,

.v

in which either member expresses the differential of the
function u.

19. We may conclude from the preceding remarks that
thQ<..differential of a variable function, is the difference be-
tween two of its consecutive values, by which terms we
mean to designate that difference which cannot be dimin-
ished according to the law of change to which theJunction
has been subjected, without hecoming O.

20. We also see that, the Differential Calculus is that
bra-nchof mathematics, in which the properties of quan-
tities are determined by means of the changes which take
place when the quantities pass from one state of value to
another.

21. If two variable functions u and v. are so connected
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1 \)(' ,,\1\\','\\'°,' ('(\\\"11 til (,,({"it otlll'r, wltatcv(:rI ()!!;i't ler a~ 10. "
",\:,1<: iua v Lc <l1Irill1l\1:.1 1(, (':1\:('(" "I' lllt'llI, Ilil'lr tlijFl'r-

cni tn!» Iril/ "lSI) /iI' I"/lill/.
I, I I ('\' 11',1'.111 '", \'" r(II\('li"w; "I' au illdl\-
.' I It', :-;1\ i J f ) ( )~' ~ , )( Ii I

, , , \','(', "..1,1,"','\ 11"'1\ :", (' ( \:1. 1 iiI,IIt' ! :{! ('Ill v: Ir ~;t : II I ,I'. .'

1/ 1" i:
I)' /1',

E'II, ~,illl';' n' ,llld r' ,Ii'(', L:,' 1\\'I,()II(I':,is, 1''111aI to elIcit

(,11:"1', :1" \\"'\\ :1,; II :11lt! I', \\'11 h:IIT

1'/1 ]- I'! Ii'

I' II<,

h,
/!I/ (/;,

\11';',
{-',J.' il.c

,

all'!'
,[/1

(/.'):.'
rill

'/'1',
1/,1 .t..

IL:'1 ie, 1\", tlli:', 1'1'llli,t1 ()f it I~ ('qll,t1I,' lil<' dil'!"'11'1I1i,t1 of 11
(,\ II, 1'-,),

~~~~. '!'L" 1"1 \',';'_;;' Id' 11li' :t1J1;rl' ll!·():,()~:jl!')n i:..; IHd F('II(~-

rally 11'11<': 1~1'(i l;e, 'f 111'11 til ,'!'I'I/Ii,d, II/'(' 1"11.'11/ III ('If('/t

01/11'1' 'III(' 1/1':' t uii II/ /illl'!'/i/ II) ""/ldl."/" 11/'11 /1/1: [unctions

frolJt ""hl,,1t 1/;1'.'1 'I/JI'/'r '/"1'111(',/ III''' IIls() I"lilitl.
FOl', if we han, 1.1w flilldillil

Ii/( -I- a

the values of II :11111 /, will 1l1:1 Iw :tlf"I'led hyallrihllting
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and multiply both members by da; we have

du=Pdx:

hence, the differential of a function is equal to its dif-
ferential coefficient multiplied by the differential of the
variable.

18. The differential of the function may also be ex-
pressed under another form. For, if we multiply both
members of the equation

du
dx =F'(x)=P,

by da, and omit to cancel d» in the first member, we shall
have

du
-d dx=Pdx,x

in which either member expresses the differential of the
function u.

19. We may conclude from the preceding remarks that
thQ(.differential of a variable function, is the difference be-
tween two of its consecutive values, by which terms we
mean to designate that difference which cannot be dimin-
ished according to the law of change to which thefunction
has been subjected, without becoming O.

20. We also see that, the Differential Calculus is that
branch of mathematics, in which the properties of quan-
tities are determined by means of the changes which take
place when the quantities pass from one state oj value to
another.

21. If two variable functions u and v. are so connected
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too-ether as to be always eqnal to each other, whatever
value may be attributed to either of them, their difJe1"-
entials will also be equal.

For, suppose both of them to be functions of an inde-
pendent variable ai, We shall then have (Art. 16),

u' - tz =Ph + P'h2
,

v'_v=Qh+Q'h2
•

But, since u' and v' are, by hypothesis, equal to each

other, as well as zz and v, we have

or by dividing by h and passing to the limit

P=Q,

hence,
du cZv
c/.1) = (tx'

du d _ dv d
d x--d x,x xand,

that is, the differential of u is equal to the differential of 1)

(Art. 18).

22. The reverse of the above proposition is not gene-
rally true: that is, if two differentials are equal to each
other we are not at liberty to conclude that the junctions
from which thc!} we1"e deriocd moe also equal.

For, if we have the function

Ini + a= F(x),

the values of a ana b will not be affected by attributing

23
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an increment It to a: : we shall therefore have (Art. 16),

bu' + a = bu. + a + Ph + P'h2
,

or, b( a' - /I) =p + P'h,
It

or by passing to the limit

b r_ll~~~- P hence, bdu = Pd:r.
d:L' - ,

Now, bdu is the differential of the [unction 1111 as
well as of the function bu.+ a: ami hcucc wo lIIay

conclude
1st. That CUNIj constant (JlUllllilll emIlIIT/I't1 u-it It II

variahlc I)y tlu: sign plus or JIIill,US will disIIJIJ)(,IIf' ill t lu:

differ!' utiut.io«,
2d. That the dUji~fI'lllilll of tilt: Jln)(/III'/ Ii/, ([ FIiF/aU"

qaardity lly 11 constaut c t s ("J,wl 10 lit" ,filji'FI'III/1I1 1:/ lite

varia/lie multiplied I)y the UIIIS/Ulil.

:kl. That the dil/ercntial of a constant (IUll/tlily IS

equal to O.
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CHAPTER II.

D~fJp-?'entiati;n of Algeb;aic Functions- Succes-
stoe Differentials- Taylor's and Maclaurin's
Theorem,s.

23. Algebraic functions are those which involve the sum
or difference, the product or quotient, the roots or powers,
of the variables. They may be divided into two classes,

real and imaginary.

24. Let it be required to find the differential of the
function.

u=ax.

If we give to x an increment h, and designate the
second state of the function by u', we shall have

u'= ax + ah = u + ah,

hence,

u'-u=r=:'
du
dx dx= adx.ordu =adx,

25. As a second example, let us take the function

U = a:xr.
3
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If we give to o: an increment It, we have

hence,

u'= ax2+ 2ahx + al/',

u'-u-h- = 2ax + ah:
du = 2axdx.

26. For a third example, take the function

1l = aXJ:

giving to a: an increment It, we have

u' tz-7;:-= 3 aa:?+ 3 aaili + alt2,

or passing to the limit

du 0 Idx = 3ax' ; renee, du = 3 ax2 d».

27. Let us now suppose the Iunction 1t to be composed
of several variable terms: that is, of the form

u = y + z - w = F (x),

in which y, z, and w, are functions of a:

If we give to a: an increment h, we shall have

u' - u = (y'- y)+ (Z_Z')+{W'- w):

hence, (Art. 16),

u'- u= (Ph + p1Jt2) + (Qh + Q'h2) - (Lh + LW),

or, u'~ u = (P + Plh) + (Q + Q'h) - (L +L'h),

or by passing to the limit
du
dx =P+ Q-L,

r
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and multiplying both members by ax, we have

(lit d d-a:;;dx=Pdx+ Q x-L x.

But since P, Q, and L, are the differential coefficients
of y, z, and tV, regarded as functions of x, it follows (Art.
17) that, the dijJerential of the sum, or dijJerence of any
number of [unctions, dependent on the same variable, is
cquul to the sum or dijJC1'enceof their cl7JJerentials taken
srparatch],

28. Let LlS now determine the differential of the product
of two variable functions.

lf we designate the functions by u and v, and suppose
them to depend on a variable x, we shall have

ul = It+ Ph + P' h2,

v'=v+ Qh+ QIJt2,

and hy multiplying

u'ul = (tt 1- Ph \- P'hZ) (v + Qh + Q'h
2) ;

if we perform the multiplication, and omit the terms which
contain hZ, which we may do, since these terms will vanish,
when we pass to the limit, there will result,

UIVI - uv
h :::::;:;vP+uQ,

or passing to the limit,

tl(uv)
--;z;;=vP+uQ;

therefore, d(uv) = vPdx + uQdx = vdu + udv.

Hence, the dUlerenlial oj the produci oj two junctions
dependent on the same uariobic, is equul tc the sum oj the
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products which arise by multiplying each by the differ'-

ential of the other.
29. If the differential of the product be divided by the

product itself, we shall have

d(uv) du dv----+-uv - u v'

that is, equal to the sum of the quotients which arise by
dividing each differential by its variable.
We can easily determine, from the last formula, the

differential of the product of any number of fnnclions.
For this purpose, put v = ts, then .

dv = d(ts) =..!!!_ + ds ,
v is t s

and by substituting for v in the last equation, we have

d(uts) =~+~+~;
uts u t s

and in a similar manner, we should find

d(utsr .... )= du +~+ ds +~ .... &c.
utsr . . . . u t s r

If in the equation

d (uts) = du +~ + ds ,
uts u t s

we multiply by the denominator of the first member, we

shall have
d (uts) = tsdu +usdt + utds ;

and hence, the differential of the p?'oduct of any number
of functions, is equal to the sum of the products which

r

•
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arise by niultipbjing the dWerentl:al of each function by
the product of the others.

30. To obtain the differential of a fraction of the form
u
v

we make

u- = t, and hence u = tv.
v

Differentiating both members, we find

du = vdt + tdv ;

finding the value of dt, and substituting for t its value
II

we obtain-,
v

dt = !::::._ _ udv ,
v v2

or by reducing to a common denominator

d: =))fl:n - udv .
'L!2 '

lienee, the diifm-ential of a fraction is equal to the deno-
minator into the dWc'rential of the numerator, minus the
uumeruun: into the dijJerential of the denominator, divided
by the square of the denominator. '

31. If the numerator tt is constant in the fraction t = .!:.,v
its differential will be 0 (Art. 22), and we shall have

or

When u is constant, v is a decreasing function of t (Art.
4), and the differential coefficient of t is negative.

This is only a particular case of a general proposition
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For, let u be a decreasing function of c: Then, if we
give to x any increment, as + h; we have

or,

u'= u +Ph+ P'h2,

u'- u=Ph+ P'li".

But by hypothesis u >u'; hence, the second member
is essentially negative; and passing to the limit,

du-=-P.dx
hence, a decreasing function and its differential coefficient
will be affected with contrars] signs.

32. To find the differential of any power of a function,
let us first take the function u', in which n is a positive
and whole number. This function may be considered as
composed of n factors each equal to u, Hence, (Art. 29),

d(
") _ d(uuuu .... ) _ du du du + du +u - .--+ + - .----un (uuuu .... ) u u u u

But since there are n equal factors in the first member,
there will be n equal terms in the second; hence,

d(un) ndu
17=-U;

therefore, d (u~)= nun-1du.

If n is fractional, represent it by .!.._, and makes
r

V = U • , whence, u' = v' ;
and since rand s are supposed to represent entire num-
bers, we shall have
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from which we find
ru:-1

dV=--ldu=SV'_

~,'q_{_ 1-:
or by reducing

r !..-l
dv=-u' du; "l'_1

s
which is of the same form as the function

d(u") = nu·-1du,

by substituting the exponent .!_ for n.s
Finally, if n is negative, we shall have

_" 1
u =u'"

from which we have (Art. 31),

d(u-") = d(~) = - d,(u")= - nu-
1

du
un u2" u2n

hence, by reducing
d(u-·) = - nu-,,-ldu.

Hence, generally, the differential of any power of a

function, is equal to the exponent multiplied by the func-
tion with its pTimitive exponent minus unity, into the
differential of the function.

33. Having frequent occasion to differentiate radicals of
the second degree, we will give a specific rule [or this

class of functions.

Let
1

V = vu: or v = u'.f ;

1 ~-l 1 _.!. du
dv ==2"u2 dU==2"U 2 du == 26;then,
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that is, tlu: dt.Ui:rclltial lif a radical 11' lite .I'cc01I1L dl'grec,

is equal tv the differential lif the qwmtity under the sign,
divided lJY twice the radical.

:34. It has been remarked (Art. 2), that III an equation

of the form
u = F(.1:),

we may regard u. as the function, and :r as thc variable,

or x as the function, and'll as the variable. \V(, will
now show that, tlu: differclltial c()ljficicllt u.luclt is II/Jill/lied

by 1'(~ganll'lIg 11 ({.I' a Jllliel/lm lif x, is the 'J'I'l'ljJ}'()('ul or
I \ that which is obtained /Iy regarding x us Iljil/wl/()II (!( II.

I If wc consider'll as the function, the ratio uf the ill-

crcmcnts will h(~ represented hy

(1)

or SII1CC a/ -:1' -ccc h, we have (Art. 1(;),

It' - II-'-t-'
j)1t + j)1 It"

or by passing to the limit

du
r/:c 1

I) + 1)1;'

.),I

But when WI~ jlas~ to the limit, the denolllinator (If tlll~

second member of cqu.uiou (I) IlllCOlllCS lienee,

d:t,

-~lu
1

(!_~)rlx
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To illustrate this by an exam pie, let
1

U = XiJ, whence :/}:c.c 'VU-= 11 :J-.

Now,

;1' as the rUllcti()1I

I
-It 'I
:l

:1£). l I We' huv« th!,!T v<t!'uhlr-" II, :'/, .uu! ;r, which are

1l1111\1itllyd('IWllll;IIt1, (ill ('itch ()liJn, l lu: j'(·btiolls hctwccn

lil!~lll 1!1;ly 1)(: e\J>IT~,;:·t! hy t.lu: ('llllatiol::'

s : I" (;1').

II' II!)W \VI' :lllliillil" til ;,' all ill('!'<:IIII:lit It, alit! de~igllate

hy k.. tb: ('!tilllgl: which 1:lkc:; pl;J('(_~III _II, we ~hall have

(Art. IIi),

Ie
I' 1-Fir,;nl' I

1/"- II

If we IIlldtiJ>ly t1J<:~e c1llialiolis togetllcr, member by
mcmbor. we shall hav«

u' - U 1/ --- 1/_x-- ---~ (P -I- 1''')( Q +Qh);-X It,

but k = y' - y; hence, by dividing and. passing to the
limit, we have

(ill, till dy.
-dc .:: -IT; X d:r-'

al,l hence, if three q\l;liItitics arc mutually dependant on
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each other, the differential coefficient oj the .first regarded
as a function of the third, will be equal to the dijferential
coefficient of the .first 1"ega1"dedas afunction of the second,
multiplied by the differential co~fficient oj the second re-
garded as a function oj the thi1Yl.

36. Let us take as an example

I b 3
• 1)= 11., u= u.r!-,

we find
du
dx = 2 ax.

But,
dv dv du 3 b 2 6 b 2

a-=-x--= u X 2ax= au:»;
a: du dx

and by substituting for u, its value a2x',

dv 3b-J>dx = 6a ;V-, and

EXAMPLJ.:::;.

1. Find the differential of u in the eXI ression

1J, = va? - a?--:

Put a2 _ af = 1), then 'It == y~, and the de~ndence be-

tween u and x, is expressed by means of 1), and u is
an implicit function of x. Differentiating, we fillet

du _ + 1 -~ _ 1 (2 _.2)-~-_ -1) -- a -:/J-
dy 2 2 '

and



DlFFEllEN'l'LIL CALCULUS.

by m~:ltiplying the coefficients together we obtain

du 1 2 -.: - x
- - - -( a - x2) 2 2.x = V- ;dx - 2 a2_x2

hence,
-xdx

du= .va2-x2

·2. Find the differential of the function
fII).;

u = (a + bx") .

. 'Place a + /),1:. = Y : then u = ym ; and

du . m-]

- = 1nym-1 = mea + bx·)
dy

ely b.-Idx=n.x;
hence,

du " m-I .-1
d; = mnbt« + bx) x .

m-I
du = rnnb(a + bx") .x"-ldx.

3. Find the differential of the [unction

u = .x(a2 + x2) va2 -:x?,

du =((a2 + x2) V a2 - x2) tl»+ x v'(} - x2 d (a2 + x2),

+ x(a2 + .'I,.:l)cl va2 - x2,

111 which the operations in the last two terms arc only
indicated. If we perform them, we find

35
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Substituting these values, we find

or, reducing to a common denominator ami cancelling the

like terms,

4. Find the differential uf the function

a',!, - .",2
1l '-", ---~ .,--;,--.

(I' + u:»: + :L,4

from which we find

5. Find the differential of tlw fUlldioll

Make

then we shall have
8

U = V'(a- y + z)"= (a _ y + Z)4 ;
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we therefore have (Art. 32),

~3 --I

du =.:_(a - y + z) t d (a - y + z),
4

3 _l_

=4Ca - y + z) 1 (- ely + dz),

-- :ltiy + :ldz
=};=-=-::::=.
1vll-Y+z

Rut from the equations ahovc, we find

(
t, .

ify = rI --:.)vl.r

Sllh~til.iltillg' l.iwsp values of lIy and d.z; in the ex-

pression for du; w« find

6. 1U=-,
x

--- da:<1,t=--_.
:f;J,

7. 1
u= J!'

--ltd:J::du zc: -r-r-r-r--rrr- •;d' +1
3

37
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8. u = -v!2ax +.x2,

ELEMENTS OF TIlE

du = (a+x)dx
V2ax+~·

du = 6(a2 + x2)2ad».

du = 6(a2+ x2{xd».

du = xdx a·
(1_x2)2

9. u = (a2+ x2)s,

10. u = a6 + 3a4x2 + 3a2,x" +~,

du= d_x. _

vr=xr(x + 'I[~;;i

du=3(a+vxydx
2Vx .

41 ~ -.~~C '0 C I'r a+ U"-2 da:
du= - X

. /b-~V :If

du = 2:xfydy + 2y2xdx.

f 14.

11. u=_l __
V1-x2'

12. u=_x _
x+ vl-x2'

X"
u-~--
- (1 + x)"'

1+x2
18. u= l-x2'

'-l_ 17.

19
x+y

. U==---zr-'

nxn-'dx
du---(l+x)"+I.

d 4xdx
u == (1-x2)2"

du = z(dx +dy) - (x+ y)3dzz4 •
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21. Find the differential coefficient of

F(x) = 8x4 - 3ail- 5x
Ans. 32ail- 9.# - 5.

22. Find the differential coefficient of

F(x) = (ail+ a)(3.# + b)

Ans. 15x4 + 3.#b + 6ax.

23. Find the differential coefficient of

F(x) = (ax + :xlf,
Ans. 2(ax + .#)(a + 2x).

A 24. Find the differential coefficient of
ta

F(x) = -vi 'x+ 1-'#

Ans.
1

,
OJ Successive D~ffe1"entials.

37. It has been remarked (Art. 16), that the differ-
ential coefficient is generally a function of x, It may
therefore be differentiated, and x may be regarded as the
independent variable. A new differential coefficient may
thus be obtained, which is called the second differential
coefficient.
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;l"~, In pas,;ing from the function II, to the iiI:;1 diller-

ential cocflicicnt, the exponent of ;1' ill CV(TY term III

which ,10' enters, will Iw cJlaJlg(~d; ,1IId h(;Il('.C, the rulu-
tiou which exist» l)dWC('1I th(~ ]Jrililitiv,~ Iunctiou u .uu l

the v.uial.l« ,)', IS di1j'l'J'clll fmlll lIlal wilich will eXist

!letwel'lI tho first dill',:r"lllial ('ocIJicJ(:IIL alld .r. Ilcl((:",
t!lC sumo ('1I<lllge ill ;,' wi l] oCl'a:iioil dilfn':IIt d(:gl'("'" "f
chang" ill the primitiv« fuucuon alld ill the first ddf::rclltJ;d

coeflicicnt ,
The secolld ddkl'l'1I1ia! ('o('!li"i"111 will, ill g('I}('ral, l..:

a function of :)': IU:II("', a 1"'1'.' dJlkr':II1ial (""dlil'jell!

mav l«: formed [ron: It, wlu.l: will ;"so Ill: a 1"\11)('111.\\

of .n; :tlld so ou, for ';Iwc,'('dlll~'; dill'('('('lillal codlil"j":II"

If 11'1: designate tilt: ~Il('('(',;si\(: dilkrcntiaJ (',)('lli(,JCnl~

hy
l'» II, r, s ; &c"

~2.d,r: -- r, &c,

Hut the dilTen:ntial of 1) IS ohlaincd hy diil;:rclilial ill!!

its val uc
rill

~D'
n:gardiJig the dcuominator ILl,' as con-

stant ; we therefore have

1(<111) 1c - := 1]1,
dr.'

Of,

and by ~ubHtitl\tiJlg for rip its value, we have
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The notation tl"u, indicates that the [unction II has

been Jifr,~n~lltia,(~d twice, alld is read, second (itJ[crential
of 11. Th(~ dl~n()millator (Lt·2 expresses Ow square (1 the
differ-nllil/i 11 x, and not tho differential of a? It is

read, rli-ffercntial square I!f x, or ditrerential of x squared.
If we dilrl;rcntiate the vallie of 1/, we have

T'lu.:« d--= q;da;2or,

hence,

and ill the same manlier we Illay find

(PU
The third differential cue flici(·nl. IS read, third7l:~:i'

differential of II di viclcd by del' cubcd ; and the differ-

cntiul {',:)cl1i{',i(~nt.,;which S«('('[;[;d it, are read in a similar

manner.
1 r cuce, the sl1ccessi ve dilr(~r('nlial coefficients are

lilt d2/l d:ll/. d,jll
&c.,~-p, -da:" ='1, -i/;r;" r, J:0 =---=.:.'t,

X

from which we sec, that each differential coefficient is
deduced from the one whidl precedes it, in the same

way that the first is deduced from the primitive function.

:l9. If we take a function of the form

It = 11:1:",
4*
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we shall have for the first differential coefficient,

du "-1dx=nax .

If we now consider n, a, and dx, as constant, we
shall have for the second differential coefficient

and for the third,

d3udar =n(n-l)(n-2)ax ..-a,

and for the fourth,

~~ = n(n - l)(n - 2)(n - 3)ax"-4.

It is plain, that when n is a positive whole number, the
function

u = ax",

will have n differential coefficients. For, when n dif-
ferentiations shall have been made, the exponent of a: in
the second member will be 0; hence, the nth differential
coefficient will be constant, and the succeeding ones will
be equal to O. Thus,

d"udx" = n (n - 1) (n - 2) (n - 3) a. 1,

and,



IJIFFEIlE]\TIAL CALCULVS.

Ta!llor's '1'111;(11'(:711.

40. TA Y LOll'S TIIIWIlE~1 ex "Iains till: method of de-

veloping into a series allY Iuurtiou of till: sum or difference

of two variables that arc indepclldent (If each other.

41. Before giving the dcnlOllstration of this theorem,

it will he necessary to PI'OVI: a principle 011 which it de-

ponds, viz: if we luu:« a fu uct u.u o] tlu: Slim or d':ffl!)'ence
of two ourial.lcs of the [orrn.

It= F(:I: ± y),

the d~f!crrnti((l coefficicn! will lu: the same if WI' sUjljlose X

to vary and y to remain (,OIlS/lIlIt, as iohen. we slI11j1ose y
to vary and x to remain. cons/ant.

For, make a: ± y:-::: ~/:

we shall then have

and

11- = F(,1./)

du
d:/ = P:

If we suppose y to remain constant and x to vary,

we have
cl:I/ =--= d»,

and if we suppose x to remain constant and !I to vary,
we have

But since the difT(:n:ntial coefficient II IS iudepcndeut
of clx' (Art. 15), it will have the sarue value whether,

dx' = d:L', da/ = ely.or,

43
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44 ELE~[ENTS OF THE

To illustrate this principle by a particular example, let

us take

u=(:r+yt·

If we suppose x to vary and y to remain constant,

we lind
l1u- = n(x + y).-t,
do:

and if we suppose y to vary and x to remain constant,

we find

du ( )"_1
d
-:cc::n x+y ,
y

the same as under the first supposition.

42. It is evident that the

F(x + y),

must he expressed in terms of the two variables x and y,
and of the constants which enter into the function.

Let. us then aSSUIne

F(x + y) = A + ByB +- (V + J)y" +,&(~.,

in which the terIlls arc arranged according to the ascend-
ing powers of Ij, and in which 11, H, C, J), &c., are inde-
PCIII!':lIt of 1/, but flllICli()ns of :1", and tiq)('JI(lanl on all
the constants which (~nter the primitive function. It is
now n~qllire(l to lind such values fur the expollents a, I), c,
&c., and the codlicicilts A, B, C, H, &c., as shall ron-
der the development true for all possible values which

may he attributed to x and y.
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In the first p\aC(;, there call he 110 llf'gativc expuncnts.

For, if any term were of the form

it may be written
II
y" ,

run] llIakillg y 0, tlli~ term would become infinite, ami

we should have

\\ Lich i,.; ahs\lrtl, si:1C1' flillcti()11 of :1', which i~ Illdt'llI'ndelit

nl' .'/, d"t's 11!)1 Ilt't:l'ssarily IWC()1111' illfilll1t: w ln:n .'1- O.

Till: first unu 11, of til,: devcloprn(:1I1, is tilt: value
which t lu: I,rilllilive fllllctioll aSSIIIIJ('.S '1'11(:11 we make

/1 __' O. Ii' \VI; t\e:<iv;lIate this vu hu: I,y u, we shall have

/o'(.r): /I.

FCc¥: I Y) 'Il',

:lIId dillt'rcillial,', lIlIdn till' s'lpposilion that (I' varies and y
nmai ns coustunt, we shall hal":

dill

dr'
IL1 tit;" .tci , an c

1- --II -I- 1/ 1-- Ij -I- &c.;
rI:1' d I.' . cl.r . tl.» .

and if we dill'(:rr:lItia1.e, n'gardillg y as it variable am] x
as constant, we shu.l] find

Rut these differential c(JL:fTicicllts arc: cflllal to each other
(Art. 41); hence, the second members of the equations

45
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46 ELE~!EXT,; OF TilE

arc equal, and since the cocflicicnts of the scncs arc
independent of y, awl the equality exists \Vhatl~v(~rIll; the
value of .11, it follows that the correspollding terms in each

seric,; will contain like powers or .11, awl that the coef-

ficients of .11 in these terIlls will be ('<l'lal (Alg. Art. 20t-\).

Hence,

:1' I
, . a -) c.= 0, U -1= a,

and cOllsequently

It .= 1, "~, c =-c:1, &c. ;

and comparing the coeilicicnts, we find

c ····2d.;:'
) an

A 1111 si nr:c we have m.«lc

F(:l'):= A=ll, and F(:1: 1- Ij). u',

A =1l,

and c()nscqu(~ntl y,

!Ill ([2"
1i=u+--y+1i:1: tf.l.·".!

4:1. This theorem gives the following dnl:lopltlcll1. for

the function
ul=(:r+y)",

u=x",



DIFFERENTIAL CALCULUS.

hence,

n(n -1 )(n - 2) ~'l 'I+ ~~, :1-~-3:" '1/ +, &c.

1.1. The theorem of Taylor llIay also be applied to the

development of the second state of ally function of the

form

'Il= F(:':),

when :1: receives all nrhitrary increment h, and hecomes

:D -I- h. For, if we suhstitul.c It for y, we have

I'll f d"1l ft." d'il h'ul ccc 'Ill - I f- + f-, &c.;rI,t da:~ 1.~ <1:1.''' 1,2,:1

h(~IICC, the dilrtTCllC(! between the two states of the func-

tion is

n'-u 10_ It d/l,2 h' ,{Ill h'
- I 11:1''' + . ~ + , &c.,

,{,,: I .2 tI:I.''' I .~.:~

)11 which the dilr('f'('n('(~ is ('\l'I,(,~St'(l in t('I'IIIS of the

dilrl'l'cnt.ial ('()('Jlit'it,nb ;1I1l1 tho as('elldillg POW('!''' (,I' 111<'
111(:\'1'1111:111.

If we now "II['P()~;C h 10 dilliinish ('(lllt.illllalh·, III(' sign of
t.lu: limit of lh(, "'Tics will c\('I"',lId Oil tlnu of till: lil'sl u.nn
dll, ,'f' '.. " . "lilt-f~ I, ()[ I h I~ I'mHllvt', Oil that of the, (:OeJhCLUIl\ ~'-.
1,1.' d.»

For, hy dividing by tc; we have,

11'·- /I ,{II IFII It dill Ii'

It, tI.l: d.r:·' 1 tl.r:
- - I , &c.,

.;~ I .~.:I
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and by passing to the limit

d1l
J1I=- X dx:

d:r

hence, when a series IS expressed in the powers of a
variable which we suppose to be continually diminished,

tlic sign <1 the limit (iftite series will rllpend (If! lite sign
of the term ushicl, contains tlie linccs! ]I()1V(T (if the variable.

45. Remark. The theorem ()f Taylm has heen demon-

strated under the supposition, that the [orm of tlu: function

u' = F(:1: -+- y),

IS indcpcndcut of the particillar values which Illay he

attributed to either of the \'ari~d)les :1' or y. J 11'11('(:, whcu

we make y .:':0, und obtain

F(:l') = 1l;

this fllllctie)Jl of :1: OII!.(ht to l'rn;{'rv{: the ,,;111,1: Iorm as

F(,' + y); else there woukl be valllc~ uf ,1' ill our: of till!

functions,

'Il' F(;1' + y),

which would not 1)(: ("Olille! ill the other, alld ('ol\:;cl[lI<.:ntly

some; of the: valllCs of :/' \VOIdd lw m:«]c to disappear when

a l'arti':Ii1ar value is as~igncd to y, which is cntiruly con-

trary 10 the suppositioll.

If 1hi: Iuuction be of the Ionu

u' ;:_b + ·Va·- x -+ y, -

we shall have
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If we now make x = a, we shall have

u'= b+ vi!/: and u=b,

in which we see, that u' and 1l are expressed under dif-
ferent forms; and hence, the particular value of y = 0
changes the form of the Iunrtio», which is contrary to the
hypothesis of Taylor's theorem. This particular case III
therefore not illdtllkd ill the theorem of Taylor.

4(). if the function is of the form

III f;1' + log y),

\V1j(~11 we make y~. 0, we have

u==.!.;oo,

accofdillg as the hil~" or the sy"tcfIl of logaritlnns is less

or g-rcat(~r than unitv (Alg, A 1'1. ~H7 and ~HtI).
Or, if we have

Of 1(' ._:1: I· ("oty,

we shall have for y. - 0

in all of which (',ase,; the 1'01111 "I' tile ftlilction is chang-cd
by In;lkin(!; y O.

I leiwe, 1.11<'1"<: ;II'<~ two ,.1;1';';,''; of cascs to which the
th"orcllI of Taylor d(}c~ 1101. "Pllly.

1st. For :lIly vulu« of :/' whi.l. Iwillg Sllilstltlltccl for a:
umh-r it radical, (',<IllS"" tlu: radical to disappear in

['(:1') II, ;111<1 1I0t ill F(,-r + y) 1(',

2d. 1-'01' every 1"'[;111011 [wI.IVC':1I ,/.' and !I III which if we

make y .~ 0, we {illd F(:r') J, ,

J
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47, If we have a fllncti(J1l of the form

I _"1-----
11 -r.. b + 'V II - ,C + y,

in which n is a whole niunbcr, all the ditTerClltial coef-

ficients for x = 11 will IJcc()llw illfillite_For, we have
.._

/)+ (II - x)",

hence,

(1 -1/)

&c.

~-;;;------~-~,
(II - - :1') "

&.c.

all of which become illflllit,~ whclI wr: make a: = a.

M udal/rill's ,/,Iworull.

48. MACL.\\JlllN'~ ']'1l1:0IlI:\1 ('\pl<lill~ lh,~ melll(HI of

developillg illt.o a ~('ri('~ <Illy 1'1111<'1.1'111 or a "illgl,~ variai)k.

Let \I", ~\lpp()~e th,~ {'IIIWLi!)11 LI) ill' 01" [II'~ [urru

1/ t- '( ,),

l t I", plalll that \11('vulu« Ill" 1-'(:1') IIII1~l I)(~('xpn~~s('d In
terms of :1', :tIId 01" [he ("III :1:llIh \\1111'11 (,IlU~r 11110 10'(.1-).

Let us thcrcl"()rt~ :1"~1I111<'

" ~.::A + H,;" \ (',,." I D». I , &c.,

in which the tt~rlllS art~ <Irr:III!.!'t''\ :1(,(,'II''\ill11; to lh" as(:elld-

ing powers uf :1', ;(11<1 ill w hi..!1 11, t:, L', l), &c" arc
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independent of :J:, and dependent Oil the constants which

enter into F(x).
It is now required to find Sitch values for thc exponents

a, 11, c, &c., and the codlicicllts A, B, C, J), &c., as
shall render the develupment trill' for all possible values
which may be attributed to :1'.

If we make ;;:cc. 0, u. tak('s that value which the F(:/,')
assumes under this sllppo~iti()lI, alld if we ucsigllate that
value hy (! we shall huvc

U =-= A.

The first dd"i"l:rcnt.ial c()cllicient IS

and SlnCI~ tlli,; docs not lIl:c(:ssarily become 0 when we
mal«: a: ... 0, it Iollow« that there mus! be one term in the
second mcmhcr of the Iorm :I:"; hence,

a. - 1 = 0, or a. = I;

and making x = 0, we have

dlt -B.
(Le

The second differential coefficient is

but since the second differential oocllicicnt docs not neces-
sarily become 0, when x = 0, we have

b-2=0, or

51
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bean', hy makill!.i:l' 0, we han!

:2 (', or

We lIlay pru\'c in a silllilar m.uurcr that

c =-=:1 alld
'/"1/

1>= J,; I.~~.:l'&e.

If 111<'11w« d{'~iL\llalc hy (: ",kit tlw Iuuction I){,C()III\'~

whr-u we Illak(' ./' u, :llld hy (,:1, (/,1, l i'", &,(", \\h,11

the ~\l('CC~~IV(" dilklTlllial ('ol'ijicJ('lJl...; 1)('('tJ!1I\: IIII.lt'I' tilt'

sumo sIlI'Pl)silJ(JlI, we shall luiv«

4\). The IllcOITl1l of .'\lacLtllrJll lIIay I)(~dedllced uumc-

diately Irorn that (If 'I'ayll)r.
III the dl'lcl(ll'"J<:lIt

,/1/ ';"11 1/ ,1'1/ 1/
u' =~II I _ 'I + 1- - +- &c.,d", ' '/'/,:: I" rI",1 I.:!.:I

the c()elllci(~nt;; II,
dll

tl» '

,/"11
r/,/::'

&c.,

arc functions of :1', and also dqwnd(!nt on the constants

which enter into F(,/,' 1- !f).
If we make ;J' --, 0, the: F('r: -+ _II) lu.comcs F(y), and

each of the di1fI'l'Cllti,d c(ldlicil'llts IwiJlg thus made indc-

pendellt of :1', will 1!t:I)I~"d ollly Oil the constants which

enter into F(:l: I- y), and which abo enter into F(y).

Hence, if we de,;igllate by

U, U1, (JII, tr«, tr«, &c.,
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the values which the coefficients assume under this
hypothesis, we shall have

2 3 1J'
F(y)=U+Uly+UIIL+UII_y_+U"1 t +&c.

1.2 1.2.3 1.2.3.4

50. If we take a function of the form

u=(a+xr,

we shall have

du ( )"-1x=: a+x ,

~; = n(n - l)(a + X)"-i,

. &c.=&c.

which become, when we make x = 0,

U= an, UI= nan-I, U"= n(n _1)an-2, &c.;
hence,

n(n - 1)(a + x)" = an+ na,,-I X + xn-2af +&c.
1.2

51. Remark 1. The theorem of Maclaurin has been
demonstrated under the supposition that the F(x) reduces
to a finite quantity when we make x = 0. The case,
therefore, is excluded in which x = 0 renders the function
infinite. Thus, if we have

u =:::'cosx, u = eosec x, or u = log x,

and make x = 0, we find u = 00 j hence, neither of these
functions can be developed by the theorem of Maclaurin.

5

1-

J
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Remark 2. We have already seen (Art. 4;>.), that the
theorem of Taylor does ]lot apply to those eases in

which the form of the Iuuct ion is ("hanged lJY attributing

a parliclllar value to one of the variahles: the theorem
therefore filils for jlarlielllllF values, hut is true for all
others, and hence, the ;;encra/ devc\opment never [ai]s ,

In the theorem of Maclaurin the failure arises from the
form of the function: hence, it is the !{I!ncral development

which fails, ami with it, all the particular cases.

EXAMPLES.

1. Develop into a series the function
____ 1;2 -.

Il = VU"2 +:x! = a(1 + '-:,)(c

2. Develop into a series the function

3. Develop into a series the fllnction

1 'I( X)_I
U = -- = a' 1+--

a+x a

4. Dcvelop into a series thc function
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ClIAPTEn Ill.

C!f Transcendental Functions.

52. If we have an equation of the form

in which a is COli stunt, it is plain that u will be a function

of x; and if a he made the base of a system of logarithms,
:I: will be the logarithm of the number 1l (Alg-. Art, 240).

When tho vanuhle and function are thus related to each

other, 'It is said to be an cJjioncnlial or logarith1Jll:c [unc-
tion oj x.

53. The functions expressed hy the equations

'It = SIll :I:, It = cos :1;, 11 lang J', 'It = cot x,

arc called circular Junctions.
The logarithmic and circular functions arc generally

called t.ncnsccndcruul [unctions, hccausc the relation be-

tween the Iunotiou and variable is not determined hy the

ordinary operations of Algehra.

Differentiation (if Loqaritlimic 'Functions.

;)4. Let us resume the function

u=aJII
•

55

&c.,
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Ifwe give to x an increment h, we have

In order to develop a\ let us make a=1+ b, we shall

then have

hence,
ah_I=~b+h(h-I)b2+ h(h-I)(h-2)b3+ &c., /1

I 1.2 1.2.3

= h(.!!..+ (h-l) b2 +(h-I)(h-2) b
3

& .).
I 1 2 1.2 3+ c,

from which we see, that the coefficients of the first power

of h will be

replacing b by its value a -1, and passing to the limit,

we obtain
du = claZ = aZ (~_ (a -1 )2 + (a - 1)3 _ & )
dx do: I 2 3 c. ;

or if we make

k
--~- (a_l)2 + (a-I? _ &c.,

I 2 3

in which k is dependent on a.
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The successive differential coefficients are readily found.

For we have
da,~ ~1--=a,.,dx

hence,

-....d
3 •a _ $k3d:il _a ,

&c. &c.

55. It is now proposed to find the relation which exists
between a and k. For this pnrpose, let us employ the
formula of Maclaurin,

u = F(x) = U+ U/!!_ + UI'_!!!:__+ UII/__!__ + &c.
1 1.2 1.2.3

If in the function

and the successive differential coefficients before found,
we make x = 0, we have

U=l,
hence,

tr-.»,

a" =1+ lex + lc2:J? 7c3.il &
1 1.2 + 1.2.3 + c.

1If we now make x = -, we shan have
k

~ 1 1 1
ak =1+-1 +~2+--+ &c.;

1. 1.2.3

57
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58
designating hy e the secolld member of the equatioll, awl
employing twelve terms of the s<:ric~, we sltalllilld

hence,
I

a-i" =-'- 1',
a = (:k.tltcrd()n~

Bill, 2.71821-1\); is tlw l,a~(~ oj" lite N;q)l'riall sy"\Clll of

Jo[!aril.lllll
S

(Alg. Art. 2;);,); hellel', 111i~ ("Ollsl'llIl qttunl tlt]

L is t lu: JV,,/wr/1I1l 11I:.',llIillllll (Jr .r.

By l"l:SlltlIill!_!" th« 1'1':,\1\1 oiJl:liIIC<l ill Art. :-d,

du' .rk rI,]',

\\T SCI~ that. 1111: dtjjiTI"II/itll III' II (1/IlI/I/ill/ o/!lill/.'I"/ /'11

nIiS/I!! ..'," 1/ ('IJIIS/IIIII /1) 11. j)(JII'I't' d'"lI.o/I,,1 lil/ II. II({)"/"/'/" I'.:"

]lOIIl'lIi, is 1'lflWI to Ille 111111111/11/ ils'"'I /It/Ii lIlll NIi/IITilili

IO,!!,orit!t1IL (~I lite ClJIIsllIlIl, i,,11I 1111; lil//i'n'lilial or 1/";

(',J'I!OIIl'1I f.

[',ti. If now we t:lkl~ tltl' logarillnl!';, 1I1 :Illy :-;ysl<:I,I, 1'1'

lluth lllCllllJCrs of the (i(l\latio'l

we shall have
/_ .._ 11l
• - "k'hie = lu, or

whence,

or by recollecting that
u::= aZ,

we have
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or, if we regard x as the function, and II as the variable,
we have (Art. :!4),

d:r: Le 1
d,~-- la --;te.

Let us !lOW suppose a to be 1he base of a system of

log·aritllllls. \VI: shall then have a: _.c the logarithm of

II, III I, and II: tho modulus of the svstcm (Alg.

Ar1. ~(5); .uu] the equation will become

1111
d(la) = Ie~,

II

Ill'll is, t lu: dilliTenllld Ill"e 11I!{llrithm of II q1lanlity is
1"llwi 10 Ihl' J1/(}(/1I1IfS 11' the system int.o tlw (lJ:Ui~rr''l/lilll (if
tlu. (1lIllIllily diuided "!I 11u; qUIINI;ty itself.

;)7. I C WI! suppose If . I' t.11!~ base of 1.1l<: Napcrian
sptl'lll, alld (~llIpl()y tl«: usual eh.nactcristic i' to desig-

lI;lIc the Napcriall logarit.lutl, W(~shall have

rl(1/11) fill

"It

th;t1. IS, 1/11' rllj/i'J"l'lIlilll of I/If' /VlllwJ"illll 11J,!.!,·aJ"ilflllL (If (!

'1"ll/llllll is 1'llllIrlll! l.lu: (/illi'n'li/wl (!/ 1//1' (/IIIIII/ily dinitll'd
IJy/hl' III/I/I//ily ils(l{

'1'111' la.·il Pt'''I'''rty IIti,!!,hl h.iv« \)(,I~tl d('<illCcd frolll t.he
(lITI:t'ditl';' at·tiel" hy o\JSI'l"villg that. 1.11!: llIodtilll"; or Ihe
l\;q)("rt;1I1 systCtl1 is "'tl1all() uuit.v .

;)H. 'J'ho l\w(I["('1rI of" MacLlIll'ill ;t1r(Jnl~ all 1':tS_YIIl('tlwd

of filldill,!'; a log'aritltlllic SI'l"i,'''; Iroru wlliclt a lal,lc of

]o!Earitllllis Iliay 1)(: ("()III]lII1<:d, I r \\1: 11:IVI! a Iunrtion of
tlll; I~))"JII,

/I 1-'(:1') 1:1.',

59
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we have already seen that the development cannot he
made, since F(x) becomes infinite when x = 0 (ArL 51.)

But if we make
u=F(:L')=I(l+X),

the function will not he come infinite when :1,' = 0; alld

hellce the developHlent may bc mndc.
The theorem of Maclaurin give»

., :\

It = F(:r) = (J + (J' !:_ + (}!!:l:-_ + u" ___'t:--+ &c.1 1,2 I .:! .:1

If we designate the 1ll0dll\lI:-i of the system of \.11(:I"g:\-

rithms by A, we shall have

dll:::.:A_
1 _ ~A(l +:JT',

dJ' 1+:1,'

rl~tl 1 A( )-2_, =-= _ i\-----c; = - I +:1'
d;L;l (I t-.1r

d:lll I_ 2.1 ,--:2A (1 t- :1') :<

d.c '( I-\- .1')'

If we now make :l.'= 0, \\": have

(J=o, (j';:.::A, tj',:___--A, {j'" __2.1,&c,;

hence,

(

,I:~ ,'1,'1 .1,1 :t'~'

1(1 + :1') - A :t' - -:4 + -:1'- .1- +-r~ - &t:.)
Thi,.; series IS lIot ';lItlit,it:lIlly cOlll't'rc>;ing, excepl in

the ca:;e when .c I'; a very ';1l1:t!1 fraction. To rt:lIdcr the
series more cOllvergillg, ,;\I!l,;Ul\lte -:r: fur :1:: WI: then have
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DIFFERENTIAL CALCULUS.

and by subtracting the last series from the first, we obtain

(I+X) (X:xr af' )l(l+x)-l(l-x)==l - ==2A-+-+-+ &c.I-x 1 3 5

If we make

~ ==1+..:..,we have
I-x n

and by observing that

zx==-,2n+z

l (1+ :) = 1C~ Z) = 1(n + z) - In,

we have

[
z 1(Z)31(Z)6 Jl(n+z)-ln=2A __ + __ +- _- +&c.,
2n+z 3 2n+z 5 2n+z

from which we can find the logarithm of n + z when the
logarithm of n is known. This series is similar to that
found in Algebra, Art. 25!3.
If we make n = 1, and z = 1, we have II = 0, and

If we make the modulus A = 1, the logarithm will be
taken in the Naperian system, and we shall have

l'2 = 0.693147180.

2l'2 = l'4 = 1.386291360 ;

and by making z = 4, and n = 1, we have

l' 5 = 1.1512925465,

and 21'5 == l'10 == 2.302585093.
6

61
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If we now suppose the first logarithms to have been
taken in the common system, of which the base is 10, we
shall have, by recollecting, that the logarithms of the same
number taken in two different systems are to each other
as their moduli (Alg. Art. 250),

or, I 2.302585093 :: A 1 .,

110 1'10 A 1,

whence, 1
A = 2.30258509 = 0.434284482.

Remark. To avoid the inconvenience of writing the
modulus at each differentiation (Art. 56), the Naporian
logarithms arc generally used in the calculus, and when
we wish to pass to the common system, we have merely
to multiply by the modulus of the common system. We
may then omit the accent, and designate the Naperian
logarithm by l.

59. Let us now apply these principles in differentiating
logarithmic functions.

1. Let us take the function

Make x
z= Ya2+.x.2'

dzdu=-,
z

and we shall have

but



.VIFFEllENTIAL CALCULUS. 63

2. Take the function
f

whence,

and make v'f+X+ .yT=X=y, -v'f+X- y'l-x=Z,

which gives

u = 1( ~ ) = ly - lz,
.....

But we have

and
, dy dzdu=---.y z

d dx ax -dx ( )y = _/--= __ -==_-- VI+x- -vr=x '
2yl+x 2Vl-x 2Vl-ar

zdx
- 2Vl-ar'

dz dx dx dx ( )
2VI+x + 2Vl-x 2Vl-ar y'l+x+ y'1-x ,

_ ydx
- 2Vl-ar'

Whence,

dy _ dz _ zdx ydx
y z - - 2yvl-ar - 2zVI-x2 I

__ (y2+z2)dx
- 2yzVl-x" ;

and observing that y2+ Z2= 4 and yz = 2x,

we have du=_dx
xVl-x2 .
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3.

U
= [[v1+?+x_r-,

5. Vl+x2-xJ

6. u = [[_va+ x f. va=x],
va+x- Va-x

dx
du= Vl+x2'

u = (lxt·

60. Let us suppose that we have a function of the form

Make l» = z, and we have

and substituting for z and dz their values,

d(lx)"= n(lx)"-' ax.
x

61. Let us suppose that we have

u=l(lx).

Make lx = z, and we shall have,

u=lz,
dz

du=-,z

hence,
dx

du=-Z .xx

dx
dz=-;x
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62. The rules for the differentiation of logarithmic func-
tions are advantageously applied in the differentiation of
complicated exponential functions.

1. Let ,-!S suppose that we have a function of the form

in which z and yare both variables.
If we take the logarithms of both members, we have

lu = yIz;
du clz _/
- = dylz+ y-;
'u z

hence,
r

or, dz
du = ulzdy + tty-,

Z

or by substituting for tt its value

du = dzY = zYlzdy + yzY-ldz.

ITence, the dij/erential oj a function which is equal to
a variable 'root raised to a power denoted by a variable
exponeut, is equal to the sum of the differetuials which
arise, b!l d~f!erenlialing, first under the supposition
that. the root remains constant, and then under the sup-
position that the exponent remains constant (Arts. 55,
and 32).

2. Let the function be of the form

Make, b~= y, and we shall then have (Art. 55),

du = aYZady; but dy == b~lbdx,
hence,

~
du = ab b'lalbd»,

6·
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3. Let us take as a last example

"'ll::=: Z ,

in which z, t, and s, are variahles.
Make, (' = y, we ~llall then have

11= z",

But dy = Cltds + st'~ldt;

£Ill = z" lz (f' It ds + st,-lilt) + {'z ..·- J dz,

d " '(I I 1 slzdt dz)u=zt .tzls+-7-+-;·
hence,

D{fJerentiation oj Circular rnnclions.

63. Let us [U'st find the differential of the Hille of an
arc. For this pllfp()~e W(~will a,;S\llll(~ IlJ(~formulas (Trig.

Art. XIX),
.: ( 1) ~ill(/c()f;I,+sin"cosn
Sill (1 + ) c.cc 'R

. ( 1.) ~il\ (/ cos /, _. sin I,("osa
8111 a-u =----j{--.

If we sulMact the secoIHl equatioll [rom the first,

and if we make ct.+ /, :v + h, a III I II - I) = :1', we shall

have

1...
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and dividing hot.h members l.y h,

I Ii ('U~ (:J' -I
;2,

hH

67

I It)
2 --,

1
Kill --II,

2

second member of the equat.ioll will lWC()IlIC

Ii we HOW pass to the limit, the ~"«()II(1 facloT of the
('os ;1)

U·

. 1 1
i'Hn- t

2
its limit will be unity.In relation to the first factor

For, U "ill I!tan" (l :-c -
•." C()SIL tallp;11

whence
SIll a COS II

R

Now, SIllCC an arc IS gl'eatcr than ils sine and less than
its tangellt"

SlIla)- -< ,
a

SIIlH Sill II
awl

a tallga

• 'The are 1)1l iR ~n~at~~r thu n n I-itJai,~~htlin«

drawn from /) t" B, uud (;oll:"wqnclllly gn'ukr

than th" "in" J)g drawn 1"'q""lIli"lllal'to .1/ II.

·1'110 un:u of tlH~ BPdor ./IU/) i!-lc·cJllal If)

~_JlB X /JIJ, and the areu or the t.riilll~~:lt~./IHG

is uqual tn I ,1111 X TIC. But th« H"dor iH I,'".~~
than the tria";;I,, being contained within it: 111')1<''',

1
2 jllJ X /1/) <" -t .nn X tic,

BJ) < BO.consequently,

c
':/1

/1
/.; J.I
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hence, the ratio of the sine divided by the arc is nearer
unity than that of the sine divided by the tangent. But
when we pass to the limit, by making the arc equal to 0,
the sine divided by the tangent being equal to the cosine
divided by the radius, is equal to unity: hence the limit
of the ratio of the sine and arc, is unity.

When therefore we pass to the limit by making It = 0,
we find

d sinx cosx
~=IC:

hence, d
. cosxdx

SlllX= R .

64. Having found the differential of the sine, the diffe-
rentials of the other functions of the arc are readily de-

duced from it.

cosx = 8in(900 - x), dC08X = dsin(900 - x),

and by the last article,

dsin(900 - x)= ~cos(900 -x)d(900 -x),

1= - Rcos(900 -:r)dx:

d
sinxdx

cosx= ---yr;hence,

the differential of the cosine in terms of the arc being
negative, as it should be, since the cosine and arc are
decrea3ing functions of each other (Art. 31.)



DIFFERENTIAL CALCULUS. 69

65. Since the versed sine of an arc is equal to radius
minus the cosine, we have

sin xdx
dver-sinx=d(R- cosx)= R .

R sin x . )66. Since tang x = , we have (Art. 30 ,
cos x

d tang x= R cosxd sinx - R sinxd cosx
cos2x

but

hence, R2dx
dtangx=--2-' cos x

67. Since R2
cot.x'=---

tangx we have

but,

hence, R2dx
d cotx= - -'-2-;smx

which is negative, as it should be, since the cotangent is a
decreasing function of the arc.
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68. Since
R2

secx=--, cosx
we have

R2d cosx
d sec x = - ---,---- =cos2x

R sinxdx
cos2x

but, R sinx---= tangx,
cosx

R2
--= secx;
cosxand

hence, d secx = secx tangxdx
]l2

69. Since
R2

cosec x = -.--,smx
we have

d
R2d inx R cosxdx

cosec x = - = - ---.--sin2x sin2x

hence,
cosec z cotxdx

d cosec x = - ----=0-J·e
70. If we make R = 1, Arts. 63, 64, 65, 66, 67,

will give,
d sinx = cosxdx (1),

d cosx = - sinxdx (2),

d ver sinx = sinxdx (3),

d dx (4),tanrrx=--o ccs z

dx (5).dcotx=--. -"sin x

The differential values of the secant and cosecant are

omitted, being of little practical usc.
71. In treating the circular functions, it is found to be

most convenient to regard the arc as the function, and the
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sine, cosine, versed-sine, tangent, or cotangent, as the
variable, "rr' we 'designate the variable by u, we shall
have in (Art. 63) sin x == u, and

If we make cosx == u, we have (Art. 64),

Rdu Rcl'lldx==- -_
smx - v'1- u2•

If we make vcr-sin x == u, we have (Art. 65),

dx=~.
sinx

But, sin z ee v'R2_ cos~x, and cosx==R-u,

therefore,

hence,

and consequently, I Rely.
eX==t===:::v'2 Ru _ u2;

If we make tangx=='~l, we have (Art. (6)

J

"

cosx R
but -:n- ==sec;-' hence

hence,
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Now, if we make R =I, the four last formulas

become du
dx=-V~'

du dx= du
1+u2

and these formulas being of frequent use, should be care-

fully committed to memory.
72. The following notation has recently been introduced

into the differential calculus, and it enables us to designate

an arc by means of its functions.

sin-Iu = the arc of which u is the sine,

COS_lU= the arc of which u is the cosine,

tang-IU == the arc of which u is the tangent,

&c. &c. &c.

If, for example, we have
du

dx=v~'1-u2

73. We shall now add a few examples.
1. Let us take a function of the form

Make cosx = z, and sinx = Y ;

then,
u=zY, and (Art. 62)j

du=zY lzdy+ yzv-ldz:
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also, dz = - sinxdx, and dy = cosxdx;

hence, du = zV(lzdy + ~ Jz ),

. sin" X)= cos x·n r(z cos X cos x - -- da,
cos.c

2. Differentiate the function

x = sirr ' 1/111,

3. Differentiate the function

'1. Differentiate the fuurtiou

-I Ila: =: tang' ~,

G. J)dfcrcnliate 11j(~Iumtiun

2 r/"
d.c .C: .; l- ~~.

Ii. Differelltiate lhe flllwl ion

_1,'r
U - - lang ------,

y
y tl.r -- ,1'iI/I

_Ii' I;/:"
till

7,1. "VI: an: ('lIaldl'd hy IIl<'all~ "I' \I:\('Llillill'~ theorem

awl the Jilkrellli:d~ of tl«: l'il'nil:ll' rllll(li()II~, III lind tho
7

73
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value of the prillcipal [unct ious \If all arc ill u.rius of the

arc itself.

Let U:c= F(a') c: s iu «: : then,

<Ill- == co::; x,
dx

_ - C()~,l',

diu
da;.j = SIIIJ',

d"11
,I.,,"

+C(l";:I'.

If we now rCllder 1],1: ddr"II'lIlia1 (ot'flicit'III"; llldl'1l1:Il!lellt

of x, by makillg a: ccc 0, \\1.: have (Art. 1~),

U=o, U'=-_l, U'' - 0, U'" 'C, -1,

[JIIII_-c 0, (,".11 • 1 :

:1' ." - &c.
hence, 1:;111:1'=

\ _
.:2.:1.1.;,

75. To 1It:I'I'I"p IIII' ('.(1,111" 11111'1'111'; of lill: are, make

u /'(,,) ("(1:-\.1' 1111'1:,

£Ill t!"11 d'lI

dx =
- ~"IL1', d.,"

Cl)~ .r,
t!./ :I

SII\./',

d'lI .I'll
('()~ .1', - :-:"III.J',

d,!" ,/,,.'

1J -- I, ( '. 0, i I.
'Ill 0,

(T'll/ I, {I'"!! u :

hence, cos:c = 1 -
,'1'- -t- - &c.
1 ' :..! 1 ,~ , :J ,,1
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The last two formulas are very convenient in calculating
the trigonometrical tables, and when the arc is small the
series will converge rapidly. Having found the sine and
cosine, the other functions of the arc may readily be
calculated from them.

76. In the two last series we have found the values of
the functions, sine and cosine, in terms of the arc. We
may, if we please, find the value of the arc in terms of
any of its functions.

77. The differential coefficient of the arc in terms of
its sine, is (Art. 71),

dx 1 '-~- = = (1_ U2) a.
du VI-U2 '

developing by the binomial theorem, we find

In passing from the function to the differential coeffi-
cient, the exponent of the variable in each term which
contains it, is diminished by unity j and hence, the series
which expresses the value of x in terms of u, will contain
the uneven powers of u, or will be of the form

x = Au +Bu3 + Cu5 +Du7 + &c.;

and the differential coefficient is

dx
du == A.+ 3Bu2 + 5 Cu 4+ 7Du6 + &c.

75
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•

But since the differential coefficients are equal to each

other, we find, by comparing the series,

A=l,
1B=-,2.3

C- 1.3--,2.4.5
D- 1.3.5 .
- 2.4.6.7'

hence,
. 1.. U + 1 u3 1.3u5 1.3.5 7+&x=sm--u=- _-+-+ u c.1 2 3 2.4.5 2.4.6.7

If we take the arc of 30°, of which the sine IS

(Trig. Art. XV), we shall have

1
2

300 1 + 1 + 1.3 1.3 .
5

&
arc =2' 2.3.23 2.4.5.20+ 2.4.6.7.27 + c.:

and by multiplying both members of the equation by 6,
we obtain the length of the semi_circumference to the

"r dius unity.
78. To express the arc in terms of its tangent, we have

(Art. 71),

which gives

hence the function x must be of the form

and consequently

dx . .4du =A+ 3Bu2+ 5o» + 7Du
6
i

- / /
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and by comparing the series, and substituting for A, B" C,
&c., their values, we find

If we make x =45°, u will be equal to 1; hence,

1 1 1 &arc 45° =1- - + - - - + c.
357

But this series is not sufficiently convergent to be used
for computing the value of the arc. To find the value

\

of the arc in a more converging series, we employ the
following property of two arcs, viz. :

1
Four times the arc whose tangent is 5"'

arc of 45° by the arc whose tangent is 2~9

exceeds the

77

.. Let II

XXVI),

. 1
represent the arc whoso tangont IS 5'

~ 9';
2

2 tang II ~
tan" 11= =-,

l:> 1- tu.nl;'a 12

to.nt74a=_:...::,tng2a = 120 •
'" 1- tlU)o'~a 119 - ~.,-

Then (Trig. Art •

I-
The last number being greuter than unity, shows that the arc 4 II 'x·

ceeds 45°, Milking ~

the differ nee, 4a- 45° =.a - B "'" b, will have for its tangent

tang b= tang (.a-B) = tnng.a-tllng B
1+ tnng .a tung B

1
239 ;

hence, four times the arc whose tangent is 1.., exceeds the IIfC of 45° by 111\
1 . s-

arc 10hose tangent is 239'

/ IJ I J I! .L. S-ll (

) .
76 /1)

I II . I
,

I']
")

/
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But
_11 1 1 1 1tang _=----+----+ &c.,5 5 3 .53 5 .56 7 .77

_I 1 1 1 1
tang 239 = 239 - 3(239? + 5(239)5

hence,

1
7(239)7 +&c.;

Multiplying by 4, we find the semi-circumference

== 3.141592653.
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CHAPTER IV.

Development if any Function if two Variables
-Dijferential of a Function of any number
of Variables-I mplicit Functions-Differential
Equations of cforves-Of Vanishing Fractions.

79. We have explained in Taylor's theorem the method
of developing into a series any function of the sum or dif-
ference of two variables.

We now propose to give a general theorem of which
that is a particular case, viz:

To develop into a series any function of two 01' more
variables, and find the diffeTential of the function.

80. Before making the development it will be necessary
to explain a notation which has not yet been used.
If we have a function of two variables, as

u= F(x,y),

we may suppose one to remain constant and differentiate
the function with respect to the other.

Thus, if we suppose y to remain constant, and x to
vary, the differential coefficient will be

du '
dx = F'(x,y) j (1),

79
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and if we suppose x to remain constant and y to vary,

the differential coeiIiciellt will be

011_ - 1,'11(, )_ ,r:,y.
dy

The ditTerclltial coefficients which arc obtained under

(2).

these suppositions, arc called 11111'1/111 dt}jimmlial COII-
ficients. The first is tl[(~ partial dilr(~relltial cocllicicllt

with respect to x, and the ~c('ond with ]"(~spcct to y.

S1. If we multiply hoth IllCIIl!,crs of (~(l'latioll (1) hy
dx, and both members of eqllatioll (2) by dy, we oiJtain

dlt_ dx = F' (J..,y)dJ."
11:r:

The expressions,

lilt--dye F" (:r:, y)i1y.
tty

rill]
-1'1,Ly ,

arc calk(i j)(lrtial differentials; the lir:it a partial diIT(~-
rential \vllh n~sp('ct ttl :1', alld the sec()lld a p'Lrlial dilfc-

rcntial with respect to if: hence,
A. IHlrtw! dJjJen~nti(jl Clw/fic/nll IS the dlfferentillZ ('()-

~fficie/lt ()j a junctioll (!f lwo or more 1I(trill/)/I'S, III/iii:!'

the SlI1'l'usitioll thlll oult] one 1{lhem lias c/WII,:.!,/:d Its

value: iLlJ(\,

A j)ltrlilll "iD'TI'ntwl is lit!' "ilrl'(I'nliill of II [unctun:

(~( fUJI) III' 1IIIJre v([rllll)lr:s,IIII,fI~I' the .\llllll()sitWIl tlia! 011/'1

one II tlc-rn has clUlII,:!,Trl il.~ nil/III'.

b2. II' we dilrer<~llliall~ ('([(liitiolL (1) ulLder tll(~ SllppO-

sition tLat u: rClllaill~ COll~tallt amI y varies, we ;-;hall have

t1 (!,II_) == Fill (:r:, 1j),
\d.I.'

---;ry-
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and since x and dx are constant

d(tI.!_l ..) = !l(d/l) ,
tI" cl.a:

which we designate by
(r~1l

(L~:: .

hence, (Fa _. 1,'111 (" )- .. .. - .__ ,1., 1/ '
da,t!!/ -

The Erst llIelllhcr of lhi,; e'luatioll ('''presses that the
fIlllction 'It has I)('(~IIdilklTlltiat"d twice, once with resjlcet

to .r, alld 011('1: with n:sj,,:d to .'/.
If we differentiate agailJ, regardillg a: as the variable,

we obtain
({'It

cc= j. 'I V (:1', 1/),
(/:1'''11.'1

which eXj>f(:ss(:s that t\l(; fUIl('Li(J1l has \)(:(;11 diif(:relltiated

twice with resped to :1: ancl Olin; with respect to y, Alld
generally

IfN +m u.

-d,;::'dtl'

indicates that the Iunr.tion 'If has h<:l:n d iffcrcntiatcd 1'1 + m
times, n times with respect to :r, and tn. times with respect

to y.

H3. Resuming the function

It == j.·(:l,',y),

if we suppose !J 10 remain constant, and give to :1: an arbi-
trary increment It, we shall have from the theorem of Taylor,

rill h (Fit h~ ((Ill k'
F( x + It, y) = 11 +- - + --;-..-- + --;--_.-- + &c

do: 1 1i:l.'z 1 . ~ d:t;l I . 2 . :J "'
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ill which, 11,
<111
(Lt,'

d21l
rI,),,,,

I(lU

~i,J.·''

arc fllllctions of J,' alld y, and dL'[wlldcllt 011 the constants

which cut,'!' the F(,)',y).
If we II()IV attrihlllc to 1/ all incrcinc nt k, the function

II, whicl. d"jIC1J(b OJl !j, will iJecome

till (I"'II if d=« k'
1I+---k! !--- .. -- +&c.;

dy ';i J.:2 d,f' 1.~.:l

IIIl
ami the function will becomc

dL'

rlil d"11 k ';'11 r dill k'I" &c.)+ !- ----- + iI,L"/'i' I ,,'--;3 +d,l: dJ·r!y (/,1' ,/.'/' I " ....... e

and the fUJlcliulL
d'il
(LLi-' w i11 becullle

and the function
,/"11

-;];" will hecome

&c. &c. &c. &c.

Substituting these values in the developmellt of

F(x + h, y).
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and arrangillg the terms, we have

rill Ie (Fit k2 (PU k'
F(x+h,y+k)=u+-l -1 +-L-Tl~+(:i~)-:-; + &c"Ly ( Y , ~ (,1} , '" , .)

I" I" L" I" 1( "u,' ( 'u._ !:'!_.++----,;-.- + "d« I, 2 (h~tly 1.2

which is the g(~llcral development of a Function of two
variahles, ill terms of the illcrClIlcnts and dillcrcntial co-
cflicicuts.

~H, If we 1l0W trallspos(~ /I, .--c: 10'(:1', y) into the first

mcruhrr, and pass to the limit, W(~ Iind

dll till 1t! [F (;1', .'lj).J - dll'-- '/1' ..j- .. _( ''/
._ ",1,'" tly"

The diffelTlI1i;d of F(,!', .'I) ,(1/, wLich is ohtailwd IIl1dl'l'

tIl(: SIIP)losili()11 that I}(J/Ii till! val'iahl(:s huv« ('liall!':(:d their

values, is «ullc.l the totl/l difli'/'(,lIlilll of the flllJ('tioll.

b;'j. If we havl~ a fllll('tioll of 1hrel: vartilhlcs, as

'It_ F(,1/, y, c ],

and :mp]losc onr: or t.Il(!llI, ilSZ, v) 1,(,111:1111 1:0IIs1:1II1, aliI!
incrcmunts 7t alld lc to hi: allriillltl'd 10 1111~otiwr t.w«, Il,,:
Jevelojllllciit of F(,,'/- h, /I / I., -:) will \)(: of 1111: Salll(!

form :IS til(' d('I'('I()]II1I('lIt of /-'(.1' i /1, .'III.); IlIl1. I{ alld

all the difli:r('lIti:d ('o\'lJi"i('l:t., I'. ii: /)(: ('lllwtl()IIS (1(' c,

83
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If then an increment l be attributed to z~ there will be
four terms of the development of the form

U,
duh,
dx

If u were a function of four variables, as

u = F(x, y, z, s),

there would be five terms of the form

u,
du
dy'c,

and a new variable introduced into the function, would
introduce a term containing the first power of its increment

into the development.
If we transpose u into the first member, and pas' to

the limit, we shall have
du du du

d(F(x,y,z)] = dx dx + dy dy + dz dz,

and du du du elu
d[F(x,y,z,s)] =-d dx+-ddY+-d dz+ -d ds ,x y z s

from which we may conclude that, the total differential
of a fttnction of any number of variables is equal to the

sum of the partial differentials.
86. The rule demonstrated in the last article is alone

sufficient for the differentiation of every algebraic function.

1. Let u == :JJ + y3 - Z ; then

dudxdx = 2xdx, 1st partial differential;
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~; dy = 3y2dy, 2d partial differential j

du d-dz=- z,dz

hence, du = 2xdx + 3y2dy - dz.

3d " "

2. Let u =xy; then,

du
dx dx = ydx,

du
d~dy = xdy:v

hence, du =ydx+ xdy.
!

3. Let u = x"'y"; then,

du
dy dy = ny"-l x'"dy :

du = mxm-1y"dx+ ny"-I x"'dy = x"'-ly"-l(mydx + nxdy).

hence,

4. Let xu=-;
Y

dudx= dx,
do: y

then,

hence,

du 1 _ xdyd/y--y

d _ydx-xdyu_ 2 •
Y

8

85
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5. Let

I
(/1/ ,,, _.

U = '- .._C__ .. _ = ay(:L'" + yo) "; then,
V:J.'~+ l

du !lx' = _~lj__,rdJ'
dx . ,,' ,'"

(:r+ if'

Ilu dy, __ _!!.__'!_II __ , ill dy
dy' - " ,'.-- ..---','

(:l-+Y")' (,1,;~ +y'")'

hence,

6. Let U = J'y:::t ; then,

rlu = 1jzldl' + ,1'zI,I1/ + :J'/lI"::: + ,1:yzill.

7. Let ,,- -v >
(_.(, _ ...... , then,

rill__ ",/ -= .zy lz iI/I
Ii!! '

(A 1'1. :1~2) :

hence,

Remark. III cll;q,ln II, 1111' flll[('II{JII~ IYn,~ SIII'P()S,~,1

to dl'jJCnd Ull a ("JIJII,,{J11l:tl'i:tl,i<-, ;III.! tlw dd'i','rell1lal,; were

obtained Ullder tillS ~11J;1'{)~lll1'I', \\'1' I,ll\\' sl'e 111:11lilt' dif-
fercilliab arc ()!JLlilll',j ill 11\1' ,;ttl'" 1'1:111111'1',\\'11111I Ill' I'II11C-

tions .u«: ill'!.-JlI·"'[I'I,1 "I' ",lI'i, {Jllli'l', :II'.! 1l,[('llillllTlcd with

a conuuon \'ari,tldl'.

1;7. \\,,, h.iv« ~I'I'II ( \1'1. ::(1), 111111:t f'llwli')(1 Ill' a single

\'arlahk lias 11111{JIIC .111'1'1''-,'1111:'\ l'III:(l('il'lI1. Ill' lit" first

order, UIII; of Ilw ,!:"\)IIII, I""" "I'llii' t lunl, ".('.; while a
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function of two variables has two dillercntial coefficients
(If 1 he 1ir;,;t order, a function of three variables, three; a
fUllction of four variables, foul'; &c.

It is now proposed to lind the sll(~(:essivc differentials
of a function of two variables, aml also the successive
differential c()(~flici(~nts.

We have already fouJld

!II{, rill
rIa =- ,1:1: +- tly.

cl.s: dy

Since du
d.» arc Iunctions of x and y, the

rill.
dy

and

illI. I.;i.T ("L,
to both

illI.
-- tl!/ must each be differentiatedtllj ,

of the variables; d:v and Ify being

("II. ,.) __d"u ,,2 (rll ,.tl , Ii", =: ;,-d.t +, d.l. til!,11:1: d:i'~ da: dy .

and sinc(~ ll)(~ s('cond difrn(~lltial of the function is hut the
differential of the first differential, we have

If we differentiate again, we have

l((Fu 1 2) _ d:1u 1, 'I ({lu 11.1'21/-,/,(--I X_, ---(,X' + _
d:t'~ (/a::I' d:1? d!J

( ([2u ) It'll (Pu 2
d 2-,-,---dx·dlj =: 2",--,-" -, d:r;J.dlj+ 2-- _ dx d»

tin/II' d:l"iI!J . dxdy~ ;T ,

87
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and conseq1lclitly,

(1'/1 17"11 Ii :',1 ,(1"/1

I
. ,. I ' ., 1"! 1 I I( ''',= -"il J: +:1 ~~,,-( :r"(1j-1:1 ~--;I ,1'( 1)"+ ~/ -I I;'.

II., !l,,;-t/y' ,/,l'd!J" ( !J'

It I~ \C!'V ca;;y to lilld tlll~ ~\lb,wq\l(:J1t dllfnclltiab, hy
ohscrvlIlg the <lllalllgy bctwc('ll tIl" I,artial ddlcrclltiab alid

the 1C1'1I1";of the dCVc\Ojllll<'lIt of a hilll)Jlli,d,
We abo see thut, II II/Ili/IIIII II t({'u/'llrill/JI1's [ut« 111'11

portia! dU/crr:nlio! C{)ljJiClcnts or t lu: jil'st un/I'r, three I:/,
tlll' SI'llJllri,jfJ/l1' I;/, tlu: third, &c.

8!-l, There an: several illlpOt'tant rcs\llt~ which Illay he
dcd\lced fll)!11 the general d(;H'.lvplllcat of the f(ll)(:ti()11 t/

two val'lallles (Art. K:l).
i st. If we lIIak(~ :r == 0, and 1/:: 0,11 alld each of

the (lii1'erenti:ll coctliCi(~llts will \W('.OlliC ('()nslalll, ;llld \\T

:.;\iall \ia vc
, 1 .: iln)F(h,k)=U+-- . h+-, k.I 1i:J; iIl/

+ &c.,

which is the uevelopnwnt of allY fnnction of two variables
in terms of their ascending powers, allli (·()efli.cients which
arc dependent on the COll~t;lllt~ that enter the primitive

functioJl.
2d. If, in the general development, we make y zi: 0, and

k == 0, we shall have
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which is t1l!~ 1lu.orcm of Taylor.
~ld. J I' we make y 0, k .«. 0, and x = 0, we have

I! {" I" /"' I"~F(/i) = It + 1/1 ,I + ~...!!...~._ + (__!!. --,,-' ~ + &c.,
dr' 1 d.x: 1. ~ till 1.;,!.:3

which is the theorem of Maclaurin.

Implicit Functions.

H9. When the relation between a function and its
variable is expressed by an equation of the form

111 which y is entirely disengaged from x, y has been
called an I'J]dicil, or ('JI)'/'es.w~d function of x (Art. {)).
When y and J? are conlledcd t.ogether by an equation of

the form
F(;);, 1/) -" 0,

y h-is been called an implicit, or implied function of x
(Art. 5.)
It is plain, that in every equation of the form

F(;i.',y) c..' 0,

y must he a Iunr.t ion of' .c, and a: of y. For, if the

equation were Tt~solvc.l W iih respect to either of them, the

value found would 1)(', t:xprcs,;t.:d ill tenus of the other
variable and r:Ollstalit (lll:tllti1.i(·s.

tj"
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90. If in the equation

u::=: F(:.I',y) = 0,

we supl'0~e the variahks :J: all<1 y to change their valucs

ill S/lcu:ssion, any change either in :J.' or y, will produce a
change ill 11: hence, u. is a fUllCtlOIl of .T and y when
they vary ill Sllc(;ession. The value, however, which u
assumes, when x or y varies, will reduce to 0 when

such a value he attributed to the other variahle as will

satisfy the equation

F(x,y) = O.

Now the partial Ji1Icrential

o« I-·IX.ax
reprC8ents the limit of the change which takes place in the
function u under the supposition that x varies (Art. tll);

and the partial dilfcrcntial

rlu I_(yo
ily

is the limit of the change which takcs place in the function

It UIHlcr the suppositioTl that y vanes. Bill the change

which takes place ill u whcn :J: and y hoth vary is 0:

hence,
rill rill. ILl' +.. lill'= O.
d.c tIll·

91. In discussing the equatioll

F(:l."Y)::=: 0,



DIFFEREl'>TI.IL C.ILCCIXS.

it i~ of tell !I(~('(~~sary t.o lill(l the diffnciltial coellu.icnts of

one of the variables n~garded as a [uuctinn of tho other,

and this Iliay be done without resulvillg' the c(jllatioll. For,
from the last article,

1111 till
- d.c +- till = 0 ;
ILl: lIy .

or,
dll rIu till+-- --.~-= 0 :
de: dy d»

hence,

tlll
rly d:r:
dx till

tly

Hence, the dUl'''''l'lItiol C()fjjicil'lIt (1 y 1"f',!:yn/rd as a

function I!f x, Is fY"Ul to t.lu: ratio If t.lu: [lorl/ul ,hJJi'n:n-

tiu! C()(jji('/(,lIts I!j" II r(',~'/{nl(:d as (/. .Iiflllli()11 II x , «tul II

n:gllnl!:rl as If [unction o] y, taken wllh (/.coulrurt) sigu.
Let us take, as all cx.uuplc, the equation of the circle

F(x,y) .ccc :1,;2 + y~ - n" 1/ 0;

then, rlu
- -- ()']'
.1 -- -- "uu: 2.'/ :

!Ill

tly
alld

hence, ~,~ --
d;1: II

:1'

Althollgll the din(~rCflLial ('ot: llj,i':lJt of tl H' Ii ('st order i"

geJl(~rally cxpress(~d ill terms (If a: .uul y, yct _If IIt:1y he

climiuutcd by means of t.he ("I"ati()1l F("',!I) _0, und the

cocflicicill. treated a" a [uur.tion or ;1' alone. III the circle,
we have

.11",-"Y = v l" -- :t'~,

91



92 ELE~IE;-';TS OF TilE

hence,
dy :V

dJ,I -~ -'/1{;~--=--~?.

92. If it. he required In liml Ihe s(O('()IJ(1 differential

coefiicient, we have merely tu diffnentiatc ihc first diffe-

rcntial coetlicient, regartkd as a f\lllc1.inll of :1', al)(\ divi(k
the result by d.L'. Thus, if we de:,igllate the first di1r(~-

rcntial c()ctDcicnt hy ]I, the sec()lI(l hy if, the third hy

r, &c., we shall have

rip-- == q.
dx

~1= r, &c.
d»

93. To find the sccond di!T(~rential coefficient III the

circle, we have
x--,
y

hence,

and by substituting for
till
dec

.r
we haveits valuc y

(FIf.
d".;.l

:l;!, + 1/
!/'

1. Fiu.l the first ddfcr(,llli;t1 ('ocilici(:llt of y, III till:

dll__= - '>Ul'l'l + ",.
1

<:": _.,
( ,1.'

rill_'_= 21j - 2mx:
dy
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hence, ~2I11lj. I :2:1'.1 ~c: '-'-'_L-.:r.
:.! y . - :21/1,': . y.- lIl,r

2. Find thc lir:;!. dil]'crcillial (:()(,j]icil'1I1 of y III the

C( [nation
y" t- :2,1'.'/ I· :c:! - . ,/'= O.

Ii.'l
dl:

-1.

s. Filld the IiI'S! .uu l :;u:olld diJkrclitial cocJ]iciellls of y,
ill the C(l'latioll

hcnce, III!
t!a:

"

,/: 0,

IIIl
dl/

:1:,::' :l fllJ (Ill -- :1,:1

:1.'/"-:1110/: y"-.II,1:

( '. ( "'/y~ - a:t') IJ.',
d,I'

or, by Hllhstilitting f(lr

) '. ( rill )~<J' - (((_II' .. :1'-) ,;!_y'" - a
tI:I:

(If'' lI:r)'

rill
d,):

d'.'! ,_ 2.r'y' (i/l,',"'/ I ~1f:i,'1 I 211',1.'1/
(/;L'- -. - ---- (.'I" ~~(~:~,y----"-'

. _ 2:1'1/(1/",:- :)'/:1'1/ + :1;') 211-",1'1/.
- - ----..-(!F:.~;;~')I

hut from the givcll equation

hence,
(fly _
d;J/'

21/':n/

(l- a;j"
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Differential i,:rjlwtio)ls (if Curves.

91. The J)ifrcn~nlial Calc\llll~ I~llabk~ \IS to free an

equation of its r:UIIS\;1I1tS, alld tu lilid a III~W cqllatiull which

shall ouly involve thl~ \ari:d>i,''; alld their dilrl'n~llt.iit!s.

if, fur ex:ulIjlk, WI~ takl~ lhl~ c'lilalitill lIf il strilight line

nnd di1rerell1.iall~ it, we (ilill

till
.l., cc:: II,

awl hy differelltlat.ing ;1L;ain,

Tlj{~ Ltst. e<[natioll is t~1I1ircly indl'p(~lIdl'lIt of th(~ vallll:S

of a alld iJ, alld IICII(T, is (''lilally applwallk ttl l~\'(:ry

straight lilll~ willch call he drawn ill tit" I'I:uw of ti,l' cu-
ordillat(~ axes. 1L is co.tlled, t lu: "ifli:n:nliu.L 1'11/1II111i1l of

lines ()J the jil'sl lJI·rla.

~G. If W(~ take the c'Illatioli of the circle

:/ \. y"" = J{l,

and tljjfef(~lltiatc it, we lilltl

:l'tI:1' +- ydy --: O.

This equation is ind(~pelHlent of the value of the radillOl

R, and hencc it belongs cqually to every circle whose

centre is at the origin uf co-ordinates.
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96. If the origin of co-ordinates he taken in the circum-

ference, the equation of the circle (An. Geom. Bk. III,
Prop. I, Sch. 3) is

from which we find

.c
and by differentiating,

0= ;)'(21jdy + 2:1~0!)- (1/ -+- :r;t)rl:r
., ,

;),~

or by n:dllcing

(:1..2 _ l/)rl:C + 2:rydy = 0,

which is the diffl:wntiaJ equation of the circle when the

ori,:_:-ill uf co-ordinates is in lh(' circumfcrouc«.

The last. 1:ljllati()1I Iliay LI: Iound ill another manner.
][ we difforcntiato tlw !:qllati()11 of the circle,

y"l1 Ndl.' -- :1'd.I' ;

hence, 1/111/ ,I'{I,I,'R -' "
tl.c

If tJlis val 11(',of It. 1)(: slibstitlll!:d ill the cqlliitiolJ of the

circle, WI: huvr:

95
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97. If we take the general equation of lines of the

second order (An. Gcorn. Ilk. VI. Prop. XII, Sell. 3),

y~=mx+n:?,

and differentiate it, we find
2yJy =mdx + 2nxd:r;

differentiating agalll, regarding dx as constant, we have,

after JiviJing by 2,
dy2 + ylfly = nih?

Eliminating tn. and n [rom the three cqllatioll~, W(~obtain

which is the general differcntial cqll<llioll uf lill(~S ur the

second order,
~li'j, In order to fre(', all eq\latioll of its ('()lIstallls, it will

he lIeces
sar

y \0 ditf!'lcllli:t1,(: it as 11I:\l1)' 11111("; a~ 1\\('1": a r.:

COI1~tanl!'<to \W ,,\illllllall".I, FOI', t\\'() CI\I:;III()II~ 111'1' III'CI':'-

sary to dilllilla1.(' a ~lllgk ('IIll,;tallt, 1.111'('(:til dlllll\lal<~ tWI)

eOllslallh, fuur to c\illllliall: tbl'l": CIIIIst:tnl:-i, ,\:.1',: 111'1\('(',

01)(: COIl:-l1.alll.Jllay \)1' ciilllinaled fl'()llI lh:' ~~,i\"il ("I"It1i"lI

alld the first 111Ikl'l'IIII<l1t''1II,I\I()il; t wo 1'1'11111 1.111'!flll'll ('11
11

,\-

lioil alld tlw {irs! :lIld :'c('!>lld dllfl'ITlltial 1''l\\,I1I()II~,,\1',

!l~l,TIll' ddkn'I\l(:tI ('IPI,I\I"II wlll('h is "h~:lllll'd aft.(~rthe

cOllslants art: (,hlllin,III,d, liI'llillg~ I() a S/I"""'S or un/"i' oj
lin!'.s, of I,hll',h tll(: ~III:II e'l"atiull rcpI'('sl:nls IIIll: of the

,;pee!t' s,
Thus, tlw lti(lt'l'I'lIlia\ equatiun (Art. !H),

((/1_ - 0,
(LI.'"
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belongs to an order or species of lines of which the

equation
y=ax+ Ii,

represents a single one, for given values of a and b.
The equation of a parabola is

i = 2px,

and the differential equation of the species is

2xd.'l- yrla: = 0, or

100. The differential equation of a species, expresses
the law by which the variable eo-ordinates change their
val lies; and this equatioll ought, therefore, to be indepen-
dent of the constants which determine the magnitude, and
not the nil/lin: of thl~ curve.

101. The tCrIl'S of all el[u:tliotl may be frced from their
expollents, by diff"n~ntiating the equation and then com-
bining th« dicrlTcntial ;HIII given equations.

Suppose, for example,

[,n:cc: Q,

P and Q bcing any functions of a: and y.
By differentiating, we ohtuiu

by multiplying both members by P, we have

nl'''dP =, PdQ,

and by substituting for l" its value,

nQdP c= PdQ.

9
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The same r(,~lIlt Illi'!!11 "1,,, ILI\ I~ 111'('11 u],tailll~d hy
taking the iog"ritilill.> "r 1'''111 111'>liI:)I'I, 01 the I"jllatioll

t- IJ.

)I!" IQ,
and (Art. t.7),

.l }' r/(.J.
II, - ;

1' (~

hence, )I el' 1/' 1''[ o.

Of Vanisltill!J Fractious, or tlu.« mlurl: tal«: the
(I

jimJl
()

IO:!, 11 has 1)(:1'11 ~;!I()\\1l ill (,\1'2;, '\1':, III), 111<11
(I

()
I'

sOlllctillJ", all 1IIl,I"i<'l"lIlllll'd -';11111",1. '1:ld thu Ih \'I!I'"

IIl::V I", II, a lililJ.' '1":111111\, "I" Iidillill',

'rbls ,VIII,,"1 :ui,:'" 1'1,,:11 II", 1111""11<'1> "I" a ,'Ollllllt,l\

factor ill 1111' 1II1II1,'rlll"r ,111<1 t! >1l()IIIIII"t'>j', Ilhl' it, \11 ... ,)jllil,..,

o Ior a 1"'l'ti(,lIi:tr \,,,1'11: "I' ti", \,"'1"1>1,,, 1"''['11,(,,>Ill<' l'I'deli"11
()

to til(: j'''!'I1i -- -,
()

If \\C have, lor (/\:11111,1,', <I 1l"lI'tl()11 Id' tln: {',)l'1I1
•

"I,' " )'
(J i ,I II)

in ",lli,'h L' alld (~ :11'11 Llllli 'l"llillilj('S, <llld m.ik« :1' ,= a,
we slll,1I have

1'(" 1/( ()
(J(,,: -_ II)" 0
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The value of this fraction will, however, be 0, finite or
infinite, according as

m > n, m<n,tn. = 71,

for Hilder these suppositions, l"('~l)(~('tivcly, it takes the form

l't;» - (1)",--" I'
(i'

J'
(~(.l.' - 1/)"'"

Lel the 11111111'r;t\.llrof' t.IIC pr(lp()sl~d fractioil l)(~ dcsig-
lIakel by .\, ;111<\tl.« d"IIOlllillator hy.Yl, ;lIld kt lIS sup-

pose: all arhitrurv illtClTIIII'llt It t.o he gin;'1 to .c, The
11111111[':\t , II' .uu] dUlolllillal.or will then \'(:COllll: a i"t\l\(,tioJl
"I' :1' ill, ;!lld \V(; :,;J"t11 have from lite theorem of Taylor

x + 0_''i_ Ii
d,I.' I

tI \" It-"I il.« I

/" \' I " I') v I I+ (.''_I~ -I- ( , __ I, _ 1- &c.
d./':: I, ~ der'" I,:~.:l '
,{'..\I 1i'-,{'oV"-- «=":"

I· I ,::I ., ,I I 1 --:,-: + &c.( ,I. ,,_ u.r I. ~,.l

If tl«: value oC:I: a, n:tiu('cs to () tho cJilTcrent.ial
C()('i'lil'il'lIh ill tl\(~ 1I11111(:ralor as far as t.111:mt.lL order, and
lh'l"t~ of 1Ill' li:;l!tllllin;l1ol' as far aK the 1It.h order, the value
of l lu: fr;[('t.ilill will IW(,Olll(:,

rim .v
';,1''''

II'" ----- 1- ,\:,c.,
I .~,:l.1 .... 111

.t:V It"
II,,:" I.~.:l.il .... tt

I· (\ce.

If we make It = 0, the vnluc of the fraction will be-
come 0, finite, or infinite [tecording us

7Jl » n, 11/. < n,1/1." 'II,

anti hence, if tll(~ value .r>: ft, reduces to 0 the same
mUlIbl'r of di!r('j'I~1I1ial coldli('il'ills in thc nnmcrator and
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dcuominator, the value of til" fradioll will l)(~ finite
and equal to till' ratio of tlu: first .litlcrcutial coeflicicut»

whic]: do not redll ..c to 0,

lO:~, Let us 1I0\\' illustr.u« till'; tlll'''!'y hy c\;ullpl"s,

I, It in tiw {'r;lI,tioll
-- ,/

,I'

o
u

But

d.\ .. 1
d \'

dl'
III - I ,.t r

III \\hll'll, If \\ " 111:1"1' .I' I, \\ I; h.iv«

II v II \
- - II, alld _.- I,

dl ( ~! I .

hcru:«,
rI. \
.t,

.-

d. \'
II,

.t,

therefore, till: ",,!tIC ()f til" fr:lI·tll)/i \\·111'/1:)' - I, is t II.

2, Fllld tlll~ vu lu.. of th,~ fr;lI'lI()ll

(/,1' .. ~"(',)' tlf'.'.,

lu' _- :.! /",1' + I;,"' \\ III 'II :}' -- (',

d.\"--- == 2 ct.r ---- 2. {[(',
d.L'

d.\'
dl'

hoth of which 'll~ClIlll(: 0, \"'(('11 :1' - c.

agalll, w c Ita vc

I) i{l(:n'llt iatillg

(f2X
d",;>'

=-~ 2 a,
-rx_ . .,- '-- 2/1 ;
d,/.~

lienee, the true value of the fraction when x = C IS
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S. Find the value of the fraction

[xl - a:r? - a2x + a?aJ 2 ,when :c;::; a.
-a

Arts. O.
4. Find the value of the fraction

ax -:x? when x= a.
a" - 2aJx + 2 a:? - x~'

Ans. 00.

5. Find the value of

a~-b'~,
x

when x = o.
Ans. la-lb.

6. What is the value of the fraction

1- sinx + cos,r h 900. , w en x= .
smx + cosx-l

Ans. 1.

7. What is the value of the fraction

a - x - ala+ alx h 0
_ / ' W en x;;:::: •

a- Y2ax-:r?
Ans. -1.

8. What is the value of the fraction

~~x 1
1
, w len x = 1.

l-x+ x
Ans. -2.

9. What is the value of the fraction

a"_ :If'
-l--Z-' when x = a.a- ',X

Ans. nan.

'1.01
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104. It has been remarked (Art. 47), that the theorem
of Taylor does not apply to the case in which a particular
value attributed to x renders every coefficient either 0 or
infinite. Such functions are of the form

in which m and n are fractional.
In functions of this form we substitute for x, a+ h,

which gives a second state of the function. We then
divide the numerator and denominator by h raised to a
power denoted by the smallest exponent of h, after which
we make h = 0, and find the ratio of the terms of the
fraction.

When we place a + h for x, we have in arranging
according to the ascending powers of h,

F(a+ h) _ Aha + Bhb + Ch' + &c.,
FICa + h) - A'h" + Bhb' + Cll" + &c.

Now there are three cases, viz.: when

a>al, a = ai, a-c c',

In the :first case the value of the fraction will be 0; in
the second, a finite quantity j and in the third it will be

infinite.

8

(x2- a2)7i
B ,

(x - a):f

105. In substituting a+ h for x, in the fraction
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B

(2ah ~ Jt2f'i = (2a + h)i,
h'i

and by making It = 0, which renders a:= a, the value of

the fraction becomes

we have

2. Required the value of the fraction
2

(;,;2 - 3 ax + 2a2)"if
l

(Xl_a3)'i
when x=a.

Substituting a + h for x, we have
2 2

h'(-a+h)"
~l--~----~~~l~=

h'i (3a2 + 3 ah + Jt2)'i

1 2

hO(_a+h)8
I ,

(3a2 + 3ah+ h2)'i

which is equal to 0, when It = 0.

106. Remark, The last method of finding the value of
a vanishing fraction, may freqnently be employed advan-
tageously, even when the value can be found by the
theorem of Taylor.

107. There are several forms of indetermination under
which a function may appear. but they can aU be reduced

to the form .Q_.
o

1st. Suppose the numerator and denominator of the
fraction

x
Xi'

to become infinite by the supposition of x = a. The
fraction can be placed under the form
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1
X'

--1-'

X

which reduces to ---, when X and X' are infinite.

2<1. We may have the product of two factors, one of
which becomes 0 and the other infinite, when a particular
value is given to the variable.

In the product PQ,let us suppose that x = (1, makes
p = 0 and Q = 00. We would then write the product
under the form,

p
PQ=- 1

Q
owhich becomes - when x = <t-
O

10 . Let us take, as an example, the function

1
(1- x)tang-?rx;

2

I

in which ?r designates 180°.
If we make a: = 1, the first factor becomes 0, ant! the

second infinite. But

hence,
1 I-x

(1-x) tang 2" «o: = --1--
cot-""x

2 )1. (

2the value of which IS when x =1.
'Jr
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r CHAPTER V.

Of the Maxima and Minima 0/ a Function of a
&ngle Variable.

109. If we have
u = Fex),

the value of the function u may be changed in two ways:
first, by increasing the variable ai ; and secondly, by dimin-
ishing it.
If we designate by u' the first value which u assumes

when o: is increased, and by 11," the .fi1·st value which u
assumes when x is diminished, we shall have three con-
secutive values of the [unction

u', u, U".
Now, when u is greater than both ul and u", u is said

to be a maxinnun : and when 11, is less than both ul and
U", it is said to be a minimum.

Hence, the maximum value of a variable junction is
g1'eater than the value which immediately precedes, or the
value that immediately follows: and the minimum value
of a variable function is less than the value uihicli imme-
diately precedes or the value that immediately follows.

110. Let us now determine the analytical conditions
which characterize the maximum and minimum values of
a variable function.

105
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Ifin the Iuuctiou

u. F(,I'),

the variable ;c he Jir'it I!lcr('asl:d hy h, ;we! then diuuuishcd
by It, IVC sha!1 hall: (,\1'1. -11),

rfll It
u' = FC" + II) -:.::11 +. +-

dl'l

I/'II I," din
,1,/ I . ~2 +

/;"
t-- &c"

I. :.!.:l

a" .~ F (I' - It )
d/l I,

/1-
di'

,/"" r d"1 /('!'

&",;
,1,(,''' I ., ,rl" I .e , :3 I

and c(Jllsl:IIIIClltly,

,1/1 It d:/I r ,('11 /,', I' (,

II - II +- "
l': (".,

'/,, 1 d,,: I. :! ,1,/' I . :! ,:j

II" - It _::
,III I,
d,l:

,til Ii'
II,}," I .J

d'lI
,/.,::t

;\O\\', If II hilS a nrax inuuu I :Iill<', tl", lilllih of /II /I,

and /I" II, \lill hul" \H: 1l1''.!IIII\I'; :111.1If II IS :1 1IIIlIIIIIIIIII,

the Illilih of 1/',-- II au.l u" u. will h..th \1Ii \""Ilill'.

11('11,"', III unkr illat " III;IY ":11'1' il 1l1;[\1I111I11I or 11111I111I1l111

value, 1111: ",'.!'IlS of I"" lilililS or the tvvo (kll'lol'lll('IIIs IIllhl

bl: both m iuus or Lolli i'11I~.
Hut Sillt:1i til" tl'riI,S illl'ol\'ill'-!, th« first pow('r of It, ill

the tw» dCI('I"PIIII:llts, hall: t:()1l1rarv Si!!;IIS, it. f(JII,)ws that

tlj(~ lilliits "I' 1,11t:d"\I'loj>III1'lils \I'd I have cOlllrary siglls

(Art. 4,1); hClln:, the luu..tiou It call neither )I<IVLi a maxi-
ilium or a 1IIIIllllllllll unless
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alld the roots (Ie !.Ilis ('qll:ltillil will ,!.',iv,: all thl' V<lltIl'S of

J" \Vllil'it 1'.<111rel,"!:r t h« 1'IIIWlil'II /I I:I!.II<'I' a 111<1,\:11111111or

it 11I11: I r i 1111 ~ I.

I LI'.ill'~ 111<\111:till: iii'st (!ilkl"'llti:d cOI,Jii"i('llt (,ljllal to 0,

till' :;I'~I':; "I' t.lu. 1IIIiits (If till: d"I'I'I"IIIII('llh will (:"I'(,lId 011

tl", ,'::':1 (II' IIii' S(Tt)'ld dtl'i'('I'('IIIi:i1 ('''''ili"iclll.

I: It '.11"-:', tilt' ';I~~IIS or 1111 .'" 1IIIIih :il'" :""!I Iw:.<;:lIive
\\ ;\;'11 1/ J:-; a J!I:I\lji~\Itll, illl(\ L{ll!l I'()~~itl\,(~ \\-)1('11 II i:-i it

l'li!:!IIlIIIIJ, il (,,[1(1\\':-; tIL.L tl«: :-;('.("!)11I1 dii'I'( !TIILi;d (',(H\l1iC!Clll

\'ItI; I", ll":':tliv,', \\1"," III" 1"111,'11"11i,', a u ruxuuuur, :111.1

I" >.,iti v I: \\hl:1I it IS <I 111111111111111.

("III:lil(l11

111'111'(',t lu: i'""h or the

0,

hlli!I!!' Sld;,titllt('d ill til(, SI\('011l1 diffl'l":I:tial ('()('flil'icIII, will

J'('lId"I' it 11('i'::llil'{, III (,;ISI, oi' ;1 ma x iuuun, :llld 1'(),ltil'(: ill

(',as" "I' a 111111111111111;:lIld SIIII''' 111I'1'1l111;lY1>1' 111111':'Iluli

(l1Jt: \'a!tl<' 01' :,' whi,'11 will silli,,!'y till's(, ",OllllillllIlS, It 1',,1-

1,,\\, 11,:11, tlwl'(: 111:11'I'e 111')J't, t h.m 011(: JlI:t,\111111111or olle

111111111111111.

BilL .r II", ru()h "flh" I'ljll;l1ioll

illi
tl.):

0,

rl'dli(',~ lhf~ ~(T"lld dif!"'I'''"li:tl l'o,.jJil'if'1l1 10 0, 111I' ~I.u;IISof

lllli limits or IllIi d(,v('II)I'IIII:IIJs will d"llI'lid Oil tI", "jgll>:l

of tlio u.rtns which invol v« tlli' third difT"I'('llti,t! ('ol'iTif'j"llt;

alld 11,,:s<! sjgll~ I)('illg difl":'I"('llt, t.IJ('n, (';111 Iil'illil'r 1)(: a

mn x inuun Of it nuuinuun, Illdl',,~ II", 1';"11(": 01':1' also l'i'dll('C

till: third din,:rl:llti,t! ('Ill'lli('il'llt to O. Whl'lI this i" the

casl" SlIhslitlltl' tilli J"l)ols "I' Iii:: I'ljlllllioll
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in the fourth differential coefIicient; if it bemmes negative
there will be a maximum, if positive a minimulII. If the
values of x reduce the fourth differential coetlicicnt to 0,
the following differential cocfiicient must be examined.
Hence, in order to [iud the values of :1' which will render
the proposed function a maximum or a minimum.

1st. Find the roots of the cljuulion

till
-=0.
J:L"

2d. SulJ:;litllle these roots in. the SIl(,CfCd/II~- dlffin'lI/iul
coefficicllts, until oneis [ou n.l which dill'S not n'''/I(,(~ !Ii O.

Then, if flu: ri/.DiTNltia! c(wDic/utt so [otnul l.c of (/II. odd

order, tlu: oulucs (if x will not render the I"ilcillill eithrr
a mu.cuuu ni or (/, mll/t1IUlI/1. But. i] il I,I' 11/ lilt 1"'I'1l

order, lind 7II:glltilJl!, the [unction trill l.c 1/ tnurtotu nt ; if

]Jositive, a mill/IIlIll/l.

Ill. Remark, Before applying the prcC(~dillp; ndes to
particular cx.unplc», it. lIlay he well to rcruurk , that if a

variable function is Illllltiplil:d or divided hy a ("",slallt

quantity, the same vallll's of tilt'. vuriuhle whICh ('(:,,<i,'r the
functioll a mu xnuum or a miuiruum, will also (,(:lItter the
prodllct. or 'lllOti(~llt a maximum or a minimum, alld hence

the coustaut [!lay h,~llcglt-cl,',L

2. Ally value of till: v.uiuhlc which will rcu.ler the func-

tion a maxilllUlll or a JIIillllllllltl, will also render allY root

or power a maximum or a mill iIIIIIIII j ancl lienee, if a func-
tion is under a radical, the radical way be omitted.



])11<'1.'1':111<:.'iTI·\ I. C.\ Let! LlIS,

1,:.'(,\ .\11' I.I:S.

1. To filid tlte vulu« ;)i' ,1: w liirh will render _II a 1I1<lXI-

111111llor ;1 Illillilllllill In the eqllation or the circle

.'I" I ,'1:'). I{~,

till :1:

.l» y

llI;lkillg
:I:

0, gilTS :L'--O.
II

The second dil;'''ITlltial c(ldlicient IS

:I'~ + y"
~i'

and siJl('e m.il, i!lg .t: ,- 0, gi vcs !/ H, we have

Ity
d.l:" J(

which heing IlcgativI', the value of:c _ () renders y a

11iaXIIIlIIIll.

2. FilHlthe valiles of:r: which will render 1J a maximum

or a HlIllllllll1ll III the eqllatioll,

diflcrcntiati ng, we find

rill"-= -1,+ 2x,dx
and

/,
making, - h +- 2.1:= 0, gives :t' "'c 2 ;
and since the second differential coefficient is positive, this
value of X' will render !/ a 1II11l111l1l111. The minimum

10
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'Yalue of Y IS found by substituting the value of x, In the

primitive equation It is

/ .,)"
1j = a --.

4

3. Find the value of J' which will render the function

a maximum or a minimum,

hence x= 2c~ ,

and,

hence, the function
value is

is a maximum, and the maxunuiu

4. Let us take the function

we find
Il

x= =!:-.
:Ja

The second difrerclltial codli('il~lIt is

Substituting the plus root of x, we have
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which gives a minimum, and substituting the negative

root, we have

which gives a maximum.
The minimum value of the function is,

r: 21P
Pl=C'-- .

9a'

and the maximum value

5 2hr.
u = c + ----.~)a

112. R emark, It frequently happens that the value
of the first ditferential coc lliciont may be decomposed into
two factors, X and XI, car.h eontailling x, ami one of
them, X for example, n~dllcillg to () fur that value of x,
which n'!ld'~r" tlw function a maximum or a minimum.
\NII<'II tit" dilr,~r"ntia.l codlici('llt of the first order takes
Ihi~ COrili, tlw gt~II('ral method of finding the second diffe-
ll'llti:d cocilici"nt Iliay he much simplified. VOl', if

r!u = XX',
(i:J:

we shall have ,
d2u X' (IX XdX'- .---- _.-._+ _-
(/:r2 - d.a: d.c '

But by hypotlwsis X reduces to O for that value of x

which renders the function u a maximum or a minimum

hence,
IPU X'dX
71;:- dx

111
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from which we obtain the following rule for finding the

second differential coefficient.
Differentiate that factor of the first diffmoential coef-

ficient which reduces to 0, multiply it by the other factor,
and divide the product by dx.

5. To divide a quantity into two such parts that the mth
power of one of the parts multiplied by the nth power of
the other shall be a maximum or a minimum.

Designate the given quantity by a and one of the parts
by », then will a - x represent the other part. Let the
product of their powers be designated by u; we shall then

have
"'( 'nu=x a-x),

whence,
dudx =mxm-1 (a - x)" - 7lX"(a - x)·-t,

= (ma - mx - nx)x ..-1 (a - x)"-t,

and by placing each of the factors equal to 0, we have

maX=--, x=O, x=a.
m+n

The second differential coefficient corresponding to the
first of these values, found by the method just explained, is

cPudil = - (m +n)x ..-1 (a- X)"-l;

and substituting for x its value, it becomes

hence, this value of x renders the product a maximum.
The two other values of x satisfy the equation of the

/'- ::_
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problem, but do not satisfy the enunciation, since they are
not parts of the given quantity a.

Remark. If m and n are each equal to unity, the quan-
tity will be divided into equal parts.

6. To determine the conditions which will render y a
maximum or a minimum in the equation

y2 _ 2mxy + x2 - a2= O.

The first differential coefficient is I

hence,
x

or Y=m:'my-x=O,

Substituting this value of y in the given equation, we

find
ma

x=--..,-===
Vl-m2

and the value of corresponding to this value of x is

a

To determine whether y is a maximum or a minimum,
let us pass to the second differential coefficient. We have

~;= (my - x)(y - mx)-J ;

hence,

I 1

113
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and since dy -0ax-' we have

(J,2y 1
([;f = - y=r;lx'

and by substituting for y and x their values, we have

(J,2y _ 1.
da!- - - a.y1- m2 '

hence, y is a maximum.
7. To fwd the maximum rectangle which can be in-

scribed in a given triangle.
Let b denote the base of the triangle, h the altitude,

y the base of the rectangle, and x the altitude. Then,

u = xy = the area of the rcctgnglc.

hence,

b : h :: y : h-x:

bh-bx
s= h

But

and consequently, ,

u =bhx- bx2 =b1 (hx -x2).
h l

and omitting the constant factor,

dudx=h-2X, or

hence, the altitude of the rectangle is equal to half the
altitude of the triangle: and since

(J,2u
([;!= - 2,

the area is a maximum.

/1

,.
',"1 ','(2. /, Y ...

I
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a -7 /1('
'1 ""l '1-

II -L'I -=:l..d? "

8. What is the altitude of a cylinder inscribed in a given
right cone, when the solidity of the cylinder is a maximum!

Ans. One third the altitude of the cone.

9. What arc the sides of the maximum rectangle in-

scribed in a given circle?
Ans. Each equal to R V2.

10. A cylindrical vessel is to contain a given quantity
of water. Required the relation between the diameter of
the base and the altitude in order that the interior surface
may be a minimum.

Ans. Altitude = radius of base.

11. To find the altitude of a cone inscribed in a given
sphere, which shall render the convex surface of the cone
a maximum.

Ans. Altitude = : R.

12. To find the maximum right-angled tr uigle which
can be described on a given line.

Ans. When the two sides are equal.

13. What is the length of the axis of the maximu ..
parabola that can be cut from a given right cone?

Ans. Three-fourths the side of the cone.

14. To find tho least triangle which can be formed by
the radii produced, and a tangent line to the quadrant of a
given circle.

Ans. When the point of contact is at the middle of the
arc.

15. What is the altitude of the maximum cylinder which
can be inscribed in a given paraboloid?

Ans. Half the axis of the paraboloid.
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CHAPTER VI.

AppLication of the D~!!erential Calculus to the
Theonj of Curves.

113. It has hecn shown in (Art. I:J), that every relation

between a Iuuction and a ~illt?;le variable on which it

depends, mav subsist betWCI~1I the ordiuatc arul ah;;("i~sa of

a curve. l Ieucc, if we n:jln~st'nt the ordinate of a curve

by a [uucuuu y, the ah~ci~~a lila), he rt'l'n~selltcd IJY

the \<triable .T.

Of Tangents and N annals.

114. We have seen (Art.
15), that if y reprcscnts

the ordinate and x the ab-
sci;;~a of any cllrve <1>1 (:1',
the lalluellt of the angle

}''/'J, which the tangent

[onus with the axis of ah-

scissus W ill be rl:prcseJited

by

dy and d» being the differentials of the 'ordinate and ab-

scissa uf the point of ron tact P.
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But we have (Trig. Th. II),

1 TR tangT: RPj

that is, 1 TR
dy
dx

y:

hence, l"'R clx b t..= y...,...... = su -tangen.
d!J

115. The tangent TP is equal to the square root of
the sum of the squares of TR and RP; hence,

TP = y ~d = tangent.
1)

116. From the similar triangles TPU, H.PN, we have

TR PR PR R.N,

hence,
dx RN,

y ely Y Y

consequent] y, ely sub-normal.RN=1j-=. die

117. The normal P N is equal to til square root of the
slim of the squares of PRand RN; hence,

. / dy2
P N =yV 1 + daJi = normal.

118, Let it be now required to apply these formulas to
lines of the second order, of which the general equation
(An. Geom. Bk. VI, Prop. Xll, Sch. 3), is,

'I= mx + nx2
•

Differentiating, we have

dy _ m + 2nx _ m + 2nx .
dx - 2y - 2Vmx+ nx2'

117
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suhstituting this value, we find

\ '1'}' d,rsUI-tangent l -- y--
tll}

2 (If/X + nx2)
-/;( +2nx'

I/t+~/I:t
--.~----- .,

~

J----.,. (/ I :~

1'1"¥ =-Ij I+),-a.c:
j
-----------------

"I "
1/1,1' +- /1,1,'- -t- (Ill + ~1I;J.')"_,I

By atlrihllting pr"l'''i' v altws to m. alld 11, tIll' ahovt~

formula,.; will IWCOJlIC applicahk \.0 each or ih« conic

sectiolls. III the case of tlll; l'ara\)()Ia, II n, :lIlt! we have

'1'1~== 2:r,
'1'1) -_: vi 11-;;'- \- -l ,,",

RN= 1ft,~
J
--------------

) T__ '-' , l ~} ,\_ 1/1.1, 1- III.
·1

11 t). It is often IIp('('~sary 10 r"I'n'~I'llt lh(' 1:llIt'YII1 alld

non IIal lllWS hv t\!t'ir l"lilatioll";. To (kll'l'Il1ille lhl~"", ill

a g(;llI'ral IIlalln('r, it will h" 11""i's~ary Iirst til (""llsltiel' t.h«

allalytical (;olltiit.ioIlS wl,wh l"I'lId,,1' au v two rurvc« tan,l.!,l'lll

to (;ach other.
Let the t \YO ClII'VI'" I) 1)( "

1'1,;(,', intersect each ot\ll:r at

P and C.
Designate thi~ ('o-ord illal(~s of

the fi.r~t CIlfV(; hy :1' ;lId 1/, alld

the co-onlinatl;s of the secolld hy
x', yl. Then, for the common

point P, we shall have

x=:r/, y=y'.
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If we represent BU, the iIlcrement of the aln;cissa, by
It, we shall have, Iroin the theorem or Taylur (Art. 44),

, " (fl II. d"y' 1/ .. (Py! Ii' &
CG-1'/1 = C/· = -1·;-1- + ~ /';'-1 -:-; + -I.,1:'-I-:;-:--I·+ c.;

(,,1, U.,.l.1.J (,,1. .tw.·

hcucc, hy placing the 1wo members C(tHal to each other,

und dividing by li, we havo

(III ,[2,{ h ",/ rl:.~..I.I..' __ ._h .j_ &c.-- + -_.- + &c., = - ,- + -
dl.' 11.1.;·' I . ~ lb:' d;lJ~ 1. ~

If we IIOW pass to the limit, hy making It = 0, we shall

have
"11 ,/11'
-;]-;-- d:d'

in which cas(~ t111~ point r: will become consecutive with P,
and the curve PEe tangent to the curve pnc. lienee,
two Iines will Iii! tangent to each other at a CO/TUnon jllJitlt,

when tlie co-oJ'(/il/(/les awl first dijJ(:nmtial c()(Jfici('nt of

the OW', (/F(, f?(julil 10 the co-ordinates arul. first dUT"rcnliaZ
coefficieu! (if til.!! other.

1~O. The equation or a tltraight line is of the form

Y = ate + h,

,11/T=a.
ua:

But the equation of a straight line passing thWllglt a
given point, of which the ('o-ordinates are :1''', y", is (An.

Geom. Bk. 11, Prop. IV),

y _ :1/' _ 1I.(:c _. :.1/1),

119



120 ELElIlENTS OF THE

or by substituting for a its value, we have, for the equation
of a straight line passing through a given point,

dyy - y" = dx (x - x").

This line may be made tangent to a curve at any point
of which the co-ordinates are x", y", by substituting forZ the first differential coefficient found from the equation

of the curve, and making x", v". equal to «", y" of the

curve.

121. Let it be required, for example, 1.0 make the line
tangent to a circle at a point of which the co-ordinates arc
x", y". Since the co-ordinates of this point will satisfy

the equation of the curve, we have

x'!2 + yll2 = R2,

and by differentiating,
dy" x" .
dx" = - yll'

and by substituting this value in the equation of the line,
and recollecting that x"2 +s"> R2, we have

yy" + axe" = R2,

which is the equation of a tangent line to a circle.

122. A normal line is perpendicular to the tangent at

the point of contact, and since the equation of the tangent

is of the form

y _ y" = dy (x _ x"),
dx

I .i; ~''_ :: tJ

- I-
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the equation of the normal will be of the form (An. Geom.
Bk. II, Prop. VII, Sch. 2),

If dx( _J')y_y == -- x-x,
dy

and this line will become normal to a curve at a point of
hi h dO " "of 1 1 f dx" bw lC the co-or mates are x , y , 1 t ie va ue 0 dy" e

found from the equation of the curve, and substituted for
~;, and the co-ordinates x", v" of the straight line be

made equal to x", t/' of the curve.
The equation of the normal in the circle will take the

form,
y"v == x',x.

123. To find the equation of a tangent line to an ellipse
at a point of which the co-ordinates are x", y", we have,

A2y"2 + B2x"2 == A2B2.

By differentiating, we have

dy" B2x"
dx" = - A2y" ;

cit II

7

hence, we have

_ ,,_ R2x" ( ")Y Y --A2" x-x,y. I
which becomes, after rcducinrr0'

A2yy" + B2xx"=A2B2
o

The equation of the normal is

A2y"y - y" =--(x - x")B2x" •
11

121
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124. To find the equation of a tangent to lines of the
second order, of which the eqnation for a particular point

(An. Gcom, Bk. VI, Prop. XU, Seh. 3) is

By differentiating, we have

dy" m + 2nx"
dx" = 2y"

hence, the equation of the tangent to a line of the second

order is
" m+ 2nx" ( x")y - y = 2y" x - ,

and the equation of the normal c
2 1/

Y _ y" = _ y x"(x - x").
m+2n

Of Asymptotes of CU1·ves.

125. An asymptote of a curve is a line which continually
approaches the curve, and becomes tangent to it at an
infinite distance from the origin of co-ordinates.

Let AX and A Y be E
the co-ordinate axes, and

dy"Y _ v" =ax,,(x - x"),

the equation of any tan-
gent line, as TP.

B

xA
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If in the equation of the tangent, we make in succes-
sion y = 0, x= 0, we shall find

de"
X-AT- _" y"--- _;1;- d'"y

d "
Y - AD - y" - _" ...l/_

- - :J,' de"

If the curve CPB has an asymptote RE, it is plain
that the tangent PT will approach the asymptote RE,
when the point of contact P, is moved along the curve
from the origin of co-ordinates, and T and D will also
approach the points Rand y, and will coincide with
them when the co-ordinates of the point of tangency are
infinite.

In order, therefore, to determine If 11 CUrve lHtv6 flsymr>-'
totes, we make, in succession, x = 00 and y = 00 in the
values of A T, A D. If either of these become [mite, the
curve will have an asymptote.

If both the values aloe finite, the asymptote will be in-
clined to both the co-ordinate axes: if one of the distances
becomes finite and the other infinite, the asymptote will
be parallel to one of the co-ordinate axes; and if they both
become 0, the asymptote will pass through the origin of
co-ordinates. In the last case, we shall know but one
point of the asymptote, but its direction may be deter-

mined by finding the value of :~, under the supposition

that the co-ordinates are infinite.

126. Let us now examine the equation

y2=mx+ nx2,

123
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of lines of the second order, and see if these lines have

asymptotes. We find
2y2 -mx

AT==x- -==----m+2nx m+2nx

AD ==y _ mx + 2nx2 == mx _ ;
2y 2 Vmx+ nx2

which may be put under the forms

AT ==_---m--
m '_+2n
x

m
AD== ~'

2 ~+n
x

and making x ==00, we have

m
AR== --2 'n

and
m

AE== tr-:
2vn

If now we make n == 0, the curve becomes a parabola,
and both the limits, AR, AE, become infinite: hence,
the parabola has no rectilinear asymptote.
If we make n negative, the curve becomes an ellipse,

and AE becomes imaginary: hence, the ellipse has no

asymptote.But if we make n positive, the equation becomes that
of the hyperbola, and both the values, AR, AE, become
finite. Ifwe substitute for n its value ~:, we shall have

AR ==- A, and A.E == ± B.
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Dijferentials of the Arcs and Areas of Segments
of Curves.

127. It is plain, that the chord and arc of a curve will
approach each other continually as the arc is diminished,
and hence, we might conclude that the limit of their ratio
is unity. But as several propositions depend on this rela-
tion between the arc and chord, we shall demonstrate it
rigorously.

A- .« -:-:'X
r'11. =- J(

PM= Vh2+(P+Plhlh2=hVl+(P+P'h)~.

128. If we suppose the ordi-
nate PR of the curve, POM to
be a function of the abscissa, we
"hall have (Art. 16),

and

PQ=h,

MQ = (P+P'h)h;

in which

Hence,

We also have

N

R

P N = v'h2 +Ph2= It VI +P,

NM=NQ-MQ= _pllt;

hence, we have

hence,

PN+MN
PM

h vT+J'52 - pi 71.2

- 71VI +(P+P'h)2
n4i

~_P'h2
VI + (P + P'h)~;

125
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of which the limit, by making It = 0, is

~VI + p2 = 1.

But the arc POM can never be less than the chord PM,
nor greater than the broken line PNM which contains it;

hence, the limit of the ratio

POM
PM =1;

and consequently, the differential of the arc is equal to the
differential of the chord. But when we pass to the limit
of the arc and chord, PM becomes the differential of the
chord, and PQ and QM, become the differentials of x
and y; hence, if we represent the arc by z, we shall have

dz = vdaF+ dy2 :

that is, the differential of the arc of a curve, at any point,
is equal to the square root of the sum of the squares of
the differentials of the co-ord·inates.

129. To determine the differential of the arc of a circle

of which the equation is

xdx
dy= --; ywe have xdx + ydy = 0, or

whence,

..
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the same as determined in (Art 71). The plus sign is to
be used when the abscissa x and the arc are increasing
functions of each other, and the minus sign when they
are decreasing functions (Art. 31).

130. Let BCM be any segment
of a curve, and let it be required
to find the differential of its area.

The two rectangles DCFE,
DGA[E, having the same base
DE, are to each other as DC to
EM; and hence, the limit of their
ratio is equal to the limit of the ratio of DC to EM,
which is equal to unity.

But the curvelinear area DCME is less than the rect-
angle DGME, and greater than the rectangle DCFE:
hence, the limit of its ratio to either of them will be
unity. But,

DCME =DCME X DEFC = DC X DCME
DE DE· DEFC DEFC'

or by representing the area of the segment by s and the
ordinate DC by y, and passing to the limit, we have

ds
z=» or ds = ydx;

hence, the differential of the area of a segment oj any
curve, is equal to the ordinate into the differential of the
abscissa.
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131. To find the ditferential of the area of a circular

segment, we have
awl

hence,
ds = d:c V }{'- :1'''.

The ui1Tcrcntial of the segment of all ellipse, is

n ----
rI" -- --- (il' . / ·1" - ('''.-- A .' v· .,

ami of the segment of a parahola

8ign?ficalion of the j)~/Jercnti(ll (;()(~I/ici('lIts.

1:32. It has already been ~hown that, if 111l~()rdinalc of

a curve he regarded as a fUllctioll of till' ahscissa, Ihe fll'sl

Jitrerclilial codfLCiclit will be eq\lal 10 tlll~ 1;lI\i!t~lIt of lilt'

allgle which Ibe tangt~nt line forms with tilt: a\IS pI' a\):-;(,I>'-

sas (Art. Iii). We now propose to show lIlt: relatlun
betwet:n a curve alltl the secolHI dilTcrt'nlial <:I)('I1[('i"\\I,

the ordinate being rr~g:t['(lt~tl as it function of the ahSi:LS:;:l.

Let A p ht: Iht: abSCissa

:11111 I'M the tlrdinalt~ of a

C\ll'VC. Frolll P layoff

Oil tltl: axis of ahscissils

tt: c-c i, anti /,/,'1 '2 Ii.
Draw the ordillalcs 1'J\1,

}".11', 1''';)[''; also tl\(: lilll~S

111.11' X, ,11'J\1" ; and bslly,
M(~, ;\11(/, parallel to the



DIFFEIlEN'I'lAL CALCULUS.

axis of abscissas. Thcll will M' Q = N Q', and we shall
have

Pil![ = y,

1 dy It (Py h~_ + &c.
PIM=y+d~'l+ dx2-1.:.! '

ely 2h rl"y 1//
P" M" = y + a;,. i + ~D;:-T. ').+ &c.,

1)" ll" -1)/ '11 - "II! ( 1 _ dy 7 tTj;_::.!!__ &j h -ir J -- .1. I,+ 1 ~ 1 2 + c.cue (:X:.

(1",
Mil Q' _ MI Q = + IW' N =_:~ 71?+ &c.

d,l,

Now, siJlc!: 1.111:sign of tlw lil'~t 1I1\:1I11)(:r of the equation
is Gsst:lltially positive, the i'iiglL of till: sl:l:oJld mcml.cr will
also he positi vc (J\ Ig. Art. br,), But i I' we pass to the
limit, by dilllillishilig It, the sign of tlte second member

will dl:jH:Jld Oil that Ill' till: sl:('olid diJ]'cf('lll ial coefficient

(ArL IH): hClIce, th!: second differeJltial cocllicicnt I';

positive.

If till: eLII'Ve is Iwl()w
the axis of ahscissa~"
the ordinutcs will be
negative, and it is easily

seen that we shall then
have

--JI'_ ~ ../'_'. 1'':..,_
(J-- ..~ - ,'v1; .

-----., (t
N

129
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Now, since the tirst member is negative, the seeoml

member will he llegative: bence we conclude that,i}' a
curre is COIIl'I'X IOH,(/((ls the axis (if a/lsCI,SS(/S, tlic ordi-
nate and sl:c()lId diO'aential cuefficient will have like signs.

N

1:~:L Let 11~ now con-
sider the curve CMM'JU",
which i,.; CllllC:lve to\vards
the axis of ah~,cis:-;a:,- We

shall have,

J'PM == y,

rill It ([t'l f"
}"M'::_c

(' &c.,
1j r - + -\-

(/." I d./ I.~~

rill '2/1 dill '1 r
j'/lJt' ==

I' &c.,
y -\

(/": I
\ JI:: I.~~

1111 /1 ,r'11 f"

J"M'- }'_\1 uu
,- (\cc.,

_-,
-- '/.1' + '/.1'"

+
1 I.:.!

J'" 1'1" - I"J\1' 1'.1" (i - 1/11 "
d'il : ~ /1 '\

&c.,
'/"1' d,,.: I.~~

\

n\lt ~IIlC(~ the: lir~t lllt:llI\ll'r lIf tlll~ l',quatio}, is 1It:!2;a\ive,

the cs~cntia\ ~i~1l or till: ~CC()lltt member will abo be
Ilegative: hellce, the Sl:conet ditfnl;ntial coeHicient will

be lIegative.
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If the curve is below the
aXIs or ah~(".i~~as, t hc ordi-
]1;\le will 1)(, III.gal.in:, alld it
is (:asily S!:CII thut w« sliould
then h.iv«

I

.11
I

l' 7" P"

\

. (til·,M" Q' - sr Q = t- J\' Mil = __';;!t' + &c,;
d:J:"

11('11('(: we {'(JIJ('llI1lc that, {f II ctuu« is concaor uruurnls the
1I.J:is (~/ al.scisso.s, !lw ()'I"I1i1lf1/(! and 8('1:1111(/ tli//ioren/jul
('w//il'/(,lIt u.il] II/({II! ('liIlln(J'!! sigJls.

'I'll(' ord!llalc will h(: cOllsidered as positive, 1I1I1(,ss the
L'OII1.r;u',,' is 111(:llli<llled.

J :IL U"IIUlI'/': I. The co-ordiu.ucs :1.' alili y, dckrlllillc
a sill!',I" poillt. of a ClIl'VC, as AI, The lirst differential or

y i, tL" limit of tilt' differcllce IwtW(:I:11 11)(, urdillall's I'll!,
J"JI', or the dilkrl'IJ(~(: l)('tW(:CII two ('OIISCCIll.lve ordinates.

Till, second ddfnclltial or y is lite limi! of ill/IN, aud

i~ dnil'cd Iroiu l11IQ or tly, ill tl)(, sallw way that tly is

dcrivl'd Cruill till: primitiv« fllnelioll. Till: ahsciss;l;1' heill!!;

~lIpposl:d t.o illcrl:ase 1lllifurtllly, tlie ddli'n'II(,(" ;111(1 COllS(:-

111lClitly the limit of the difl<:rclice ])(:tW('.CII I) pi and l "P"
is 0: therefore its second differential is O. The co-ordi-

nates ;x: and y, and the first and second differentials deter-
mine three points, M, 1\11, M", consecutive with each other.

13;). Rcmm1. 2. When tlte curve is convex towards
the axis of aLscissa, the first differelltial cociIicient, which

131
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represents the tangent of the angle formed hy the tangent

line with the axis of absei:;sas, is an ill(;l"casing function of

the abscissa: hence, its uifferential coctlicient, that. is, the

seconu differential coefficient of the function, ought to be

positive (Art. :n).
When the curve is concave, the first differential coclli-

cient is a decreasing function of the ahscissa; hence, the

second differential cocfflCi(~J1t should lIe Iwgative (A rt.. :31).

Examination of the Singular Points oI Curves.

136. A singular point of a curve is OIl(~ whidl is dis\ill-

gui:ihcd by some particular property not (~nj()y,~d I,y \h,~

points of the curve in I!;cneral: :-luch as, th« point a\. ·",hich

tlio tangent is parallel, or peqwlIdiclILLr to, th« a\iS lIf

abscissas.
137. Sillce tIll) first diif"ITlltial coeflicient (~X prt~~ses \h,~

value of the tangent of il«. allg'" which the \.:l.llg'!lIt line
forms with the axis of ahscissa~, allli i-iin("(~\Itt' t;11l~"lIt IS
0, when the angle is 0, an,l illiilli\(: \v\WII lh,! allgk i:; (H),',

it follow,; that th(~ foots of tuc C'ltl:t\it)1l

1//1 Il,
d.,.

will givc the ah~eis,.;as of all tlt(~ poill\;-i at which lite tan-

gcnt is parallel In the axis of a\J:-;cis,.;as, and the roots of

the equation

dy
dx = 00,

or
(l:i:
-= 0,

dy
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will give the abscissas of all the points at which the tall-

gent is perpendicular to the axis of ahscissas.

I :1H. If a curve from being convex towards the axis of
abscissas becomes concave, or from being concave be-

comes convex, the point at. which the ehange of curvature
takes place is called it lloill/ (~/ injlr;;j'io/{.

:-;illc(~ tlw ordinate alld dilrerenlial coefficient of the

second order have the sumo sign when the curve is convex
towards the axis of ah~cissas, uud contrary liigm; when It

is concave, it j"llows that at the point of inflexion, the

second <iilterential cocllicicnt. will change its sigll. ]lilt

Ilctwccn the [>()silivl~ and negative values there wilt be (Jlle
value of a: which will reduce tho second dilll)l'elltial cocfTi-

«icut to 0 (Alg. Art. ~H~l): hence the foots of the eqll:tliull

d!'j
_ .. ,-,-- ,,_-c 0,
d:l.···

will give the ah~ei>;sa:; uf the points of inflexion.

13~}. Let us IIOW apply these principle:; in disCllssill,!):
the equation of the circle

;I':! 1- y~:- R~.

\Ve have, Ily <iili'crelltialillg,

rly :t'

i/;JC' !/
and placing

..1'--- --- =-~0,
1j

Substituting this vulu« ill the c(l'latioll of the curve, we
have

we have ,1: = o.

1j:::=J=R;

l~

13~l
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hence, the tangent IS parallel to thl~ axis of ahscissas at

the two points where tile axis of ordinates intcn;ccls the

circurnfcrcnr:c.

If we make

{/I/ tr:_:_._ == __ == rfj

tLi: y , or
1/- ~~= 0,
:t'

we have y = 0; suhstituting tllis value ill the equation,

we find
:c =:1::: R,

and lienee, the tangent is p.-rpcndiculnr to t Iw aXIS of

abscissas at the poinb where the axis intersects the «ir-

cumfcrcucc.

The second different.ial coefli('icnt. is eljual to

If'
y"

which will he IH',!.!.ativI~ whun 1/ IS pW'iliv(', :lIld positive

when Y IS ncgat.in', 111'1(('(', til" ('il'clllllf('j'('n('(~ of' tho

circle is COIIC<lve t()\Vard~ tli" axi-. of a\)sl'issas.

If we apply a si milu r <tllalysis to til" l'II'lalll)ll I'!' III"

ellipse, we shall filld the lalll',I'llh l'al'alll'l It) 111(' ;1,1'; of

abscissas at. the ('xtl't'llliti('s of 1)11i: axis, all.! IlI'I'I'I'lId"'III;11'

to it at llu: 1''(trr~Jllitil'''; (If tll<' Iltlll'l', al\(! till' I'III'VI' 1'()III'aVI~

tu\\ards its axes,

140, Let. us !lOW di:'I'II'S a ..Llss III' 1'111'1'1'", ",lli..!l lllay

he rcprcscuted \)y tile ('ljllatioll

in which we ~lll'l'()S(~ (; I" ],C l)tl~lli\,l~ or IlI'gativc, and

different values to be attributed to the ex poucut 'lit.
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1st. When c is positive, and rn entire and even,

By diiferentiating, we have

illJ ( ),"-1
_J_ =me u: - a ,
do:

1121j m ~--',=m(rn-l)e(x-a) -.dx~

If we place the value ('2. = 0, we find :1-' = a, and sub-da:
stilulillg thi~ value ill the equation of the curve, we find

ircnr-«, .1: = II, !J cc~ IJ, uro the co-ordinate,.; of the point

at which till; tangent. line is parallel to the axis of
al)~ci~~as.

~IJl(:e lit is even, tn. ---:! will
also lx: even, and hencc the Sf'.cond
diil\:n'llli;t! (,1)(:llicil:Jlt will be posi-

t iv» ('JI' :111 ,;11111'''; o( ,,', Tlwellrve

will Ilwrcfol'l: hI: COIIVI', lo\V;m!s

1.111:a\IS of .r, alld i.lwn: will 1)(."
110 !,'Jilll 111'11111"\1011.

']'hl: vuhn- Ill' ,I' It relld(:]'s 1.h" or.lin.u« .If it 1lilllJlllllm,
SlIll:(' after 7Ii dill,:n:lltiatiolls a diJli:rCII1.ial cocllicit'lit of an
e vcu order bccoilles COllstallt .uu] positi vc (A rt. I 10),

The curve docs 1101.jlltl'n;er-I t.lu: axis of X, hut ruts the

axis of Y at :1 distance (1'0111 tho origill c\l,resscd "y

!I =-= /) + ca".

J
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141. 2d. When C 'IS ncgattu(', and III entire and cuell.

w, ~hall have, by diJrl'n~llti:ttillg,

dy
d»

_ mct;» _ uri-I,

The discussion is t li« s.uuc as

Ill'fore, excepting that the s(,c()lld

ddkrclitiai c(Jcfiiciclil Iwillg III'!~a-

uvc f"r all values (If ,I', t lu: rurve
I, C()lIcave towards th" a\IS (jf
a"~('.issas, and ih« vulu« (lf:t' «.

fellders t he or" IIIat C 1) a IIl:tXI-

11111111 (Art. IlO).

11111,/,1'1/.

I l~, :ld, 11"111'/1 (' IS }'//IS II( 1/l1I[lIS, 1/111/111 rnl u« u ui!

\\"c shall hnvc, l.v ddfcrClitiatillg,

_i1lld,I'-(/j'-',

d'il
d,1

I 111(111 1)1(1'-(/),,-"

Till: first difl",'r"lItial "",.fli('II'llt wil] I,.. 0, whcu :1' = a ;

hi III'!', thc t:l11!!,('lil "ill I" 1':lralkl to tin: a\IS ol ahscissas,

at tht: )luillt of whirh the: ("u-()rdlllatl's arc ;J.' - II, Ij = I,.
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Since the exponent m - 2 is
uneven, the factor (x_a)m-2 will
be negative when a:< a, and
positive when ai;» a; hence, this
factor changes its sign at the
point of the curve of which the
abscissa is e:= a.

If c is positive, the second differential coefficient will be
negative for ca< a, and positive for x> a: hence there will
be an inflexion when a: = a. If c were negative, thtl curve
would be first convex and then concave towards the axis
of abscissas, but there would still be an inflexion at the
point ~ = a. At this point the tangent line separates the
two branches of the curve.

There will, in this case, be neither a maximum nor a
minimum, since after m differentiations a differential coef-
ficient of an odd order, will become equal to a constant
quantity (Art. 110).

143. 4th. When c is posuice or negative, and m a
r, . 7 . 2

.J ractum uunng an even numerator, as m = 3'
By differentiating, and supposing c positive, we have

dy 2 E._I 2c
-d =-c(x_a)B = l'

X 3 3(x-a)"i'
rPy _
d:r?-

2c
• t

9(x- a)B

If we make a:= a, the first differential coefficient will
become infinite; and the tangent will be perpendicular to

l2*
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the axis of abscissas, at the l,oillt of which the co-ordinates

arc .c --c: a , Y -- b,
III J'l'gard to the s,;co!ld dilrcren-

lial clJctlicicnt, it will ],,;CUIlW iufi-

nitc for :/.' -- a, .u«! IIq_o;allvc [or

CI'I'ry ol lu.r \ ;dlw "I' ,I', sinel: the
taclur (.,' - II) of Ilw d"IIIIlllillalor

j~ raiscd to a powcr dt'll()tc'[ I,y an

(:1'1'11 ('X [,"!Ie nt. 111'111'(', 1111' ('II1've

will he r.oncavc tlJwards the axi~ of

I f w«: take the eqllatioll of the curve
~

s=':' ((;"_1/)'1,

aml wake tc = (I + It, ant! ;1"", a - h, we shall have, III

either ca~l',
'J

yc::::: Ii -\ ch' ;

and IWllet', 1f will hi: I,:ss f()r ,I,' ,:.. a , 1.hall [Ill' allY other

vaillc of ;r, cither _greater or less than 11. I [cucc, the

vallle a;;c= a, relllkr,; y a mi"imulIl.
If c were negative, till: (''Illation wOld,llH; of the form

1/ _-I) - C(,1' (/),';

awl \I',~ should have, hy dilT('J'cliliating,

2('
~ -·-~-·--I ,

:1(,1 - - u)"

and
d"y _
d,)./-

2('
----------:\.

9(:1' _ u)'
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The first nu.l t;c('()wl d illcrcn-
tial cocJliciellls will he illfillite for
o: c-" II, alld the second diJrcrclllial

cocJ1iciclll. will Lc jlll~itivc for all
vallw~ of (I.' gn:atcr or less thall a;
<llId lrcurc, tho curve will he (:011-
Vex low.ud» tile aXis ()f allScissas.

H, ill the t:11";It.i()11 of tlte curve

2

Y - Ii - I(,/."~ a)\

we 1IIal\.(: :1.' =-C fl It, alld a: _-= II - It, We shall have, III
('it ller C;ISC,

2

Y c:c:c D - cit" ;

and 1it:IICI', Y will hi: grc:iI.!T for :1: ~c: II, thall for allY other

value of :1' citlJ('r .!2;IT;llcr or II::,,., l hn n 1/. IlellCc, tlic

value ,I.' c: «, n:lldl:r~ lj a IlI:lXllllllIll.

1,1/1, /(""1111'/.:. Tilt: cOlldit.iolls of a maxunum or a

lllilllltllllil dl:dllccd ill An. 110, wen: (:stahlisllUd hy lll!:allS

of till: tlworelll of 'I':I.ylor. Now, tltl: casl: ill wlticll till:
flillCilOll cJl:lIl.!2;I:S its 1'''1'111 by a j';lrt.Jt'liI:lr V;t!IIi: aUri

})llted tt, (I', was C\('llldl''[ ill tilt: d"lliollstratioll of that

tIreo!'clli (:\ rt. 11;»). 111:111'1:, t.11I: conr] iti()I1"; ()f mininnun

and ltlaXlllllllli dl:tllle(:.] ill t.hl: two last. ca";l:S, ollght

not to have ap]JI:ared anlOllg the gl:lIcral c()lIditi()lI~ of
A 1'1. 110.

Vic thl'rcfurc see tltat. t.hl:n: :ll"I: t.wo "pccit:s of muxuna
und lIlJllillla, tite olle citar;lCtcrizcd Ily

11/1

d."
-__ '1.1.

139



140

In the first, we ddcflIline whether the function is a
maximum or a J\lillilllum by exaJllillillg the Sll!tscqW:lll

dJffcn:lltial C()cJli('lcnls; alld ill tIll: secolld, by cx;ullillillg

tbe value uf the flllwli(\11 hef()n; and afu:r th:.1. value of :1'

which renders the jir~t diif.'rclltial ("(H:Jliei.:llt Jldillih:.
The Lr:ulCltes J\l f), i\/ i: which arc: both rqIITs.:lIted l)y

the c'jUatJ()11

are Hot cOllsidcrc(l as [,arb of a (,()lltillllOllS rurvc. For,

the general relations lH:1W1TII y ;lIld :1' which dl'1"rII)ill':

each uf the paris si», Al/o,', is elltirely hr"l,cll at tit,:
point J/, ",IWIT ;I' - II. TIll' l\\'lJ paris ai"(: 11)(,I"'i'"rt:

n:u:ardcll as ;;('I'ar:lt<: iJralwll!'s which 1IIIIIe at ill. '1'1,,:
]Juillt of union is c;dlt-d a ('11.1'1', or a (11.1'/' 1)()lIti.

I(lIcfili/l II/nlll!!,' 1111. «ncn r!I'!I()/II.iui/./()(, us III

Fuller this supposition the Cqll;ltiull of the rurv« will

become
y ,_= /, J- c(:r - a)',

and by di1ferclltiating, we have

till :1 (:_- of- _~_-_

(/;1: -- - i1 (:1.' _ (/) I,'

and
:1 t :

T· ------" .
,1 .1(:,:- a).
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The curve represelltcc[ by this
equation will have two hranchcs :

the one corresponding to the pills

tougn will be concave toward" the
axis of abscissas, aucl t he ono (;01'-

rcslJOliciing to the Illinll:; sigll will he A

convex,Every value (If a: ll~"s tliuu

a. will rcnd,;r 1/ imaginary. The co-ordinates of the point
lll, arc :L' = II, Y _ I),

Al

I,W, (itll. H'/u'!l r: is j){)s/livl' or ul'grttil:c urul III It

.Ii 'Iff'! tUI/. //("'i".~' (IJI. 11)/1;/)('1/ 1ll1I1U'J'(I/{)J' aiu]. at: U1/C'UC/I. de-
:1

I/OI)t/IIII/(!!, (1.1' III =_
t.

Under this ;-;llp(1osil.ioli tIl(: cqllatioll will becomc

('(:r.'-a)",

dy
-·1::

d,I'

,til
rl,':

;),;, (I' (/)'

Irou I w/iwh wo :'<:(: 11::11il' \\1: II,;" till: slIl"'rior sig'n of tll(:

Iirst (,'lllill.ioll, till' 1'111'11:will Lc ('(111','1:, low:ll'ds t lu: "XIS
uf ai>s(:ISS:lS lor .» .>: fI, 111:11Ilwj'(' will 1)(, it poilll (If illl1('.\ion

for :t' -- II, and thai the I'III'VI', will I", ('OIIl'"V(' li>l' :1':> II.

If tlic lower Si~11 1)(: t:1111,jO\Td, tire (irst l'r:1I1<'1r will hc('olll(:

cuncave, and Ut<: ()tlIlT ""/I\'I'X,

J 117, Till: CII.SPS, which Ilavc 1)(:(:/1 COIISidcrcd, wore
fnmu:,[ hy llrl~ union of two curves tlrut wen: convex to-

\
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wards each other, and such arc called, cusps .of the first
order.

It frequently happens, however, that the curves which
unite, embrace each other. The equation

(y _ :JJ)2 = a!',

furnishes an example of this kind. By extracting the
square root of both members and transposing, we have

and by differentiating

d1j 5 2-'-= 2x± _x2

d» 2'

We sec by examining
the equations, that.the curve
has two branches, both of
which pass through the
origin of co-ordinates. The
upper branch, which corres-
ponds to the plus sign, is constantly convex towards the
axis of abscissas, while the lower branch is convex for

64 64x<--, and concave for x>-- and x<l. At
225 225

the last point the curve passes below the axis of abscissas
and becomes convex towards it. If we make the first dif-
ferential coefficient equal to 0, we shall find x = 0, and
substituting this value in the equation of the curve, gives
y = 0; and hence, the axis of abscissas is tangent to both
branches of the curve at the origin of co-ordinates. At
this point the differential coefficient of the second order
is positive [or both branches of the curve, hence they

IJ,- .:
l_ - J{~

y 04
4 ;z_,:u ~ )[ ::::

J( 'J., ':V S -/0
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nrc bOlh convex towal'd~ the u x rs. \V1wlI the ClISP IS

fOl'llJ('d II)' the union of two ru rvcs which, at II,,: point
of cOllta('t, Ii,: Oil the: xamr: silk of the: COJllIllOIi tallg('"t, it
is called a t:IISP of the srcoru! order,

11."', Let 1I~, as another ('X:l1l1pl(" disclIss thc curvo

whose "'lllatioli IS

y /1 + (,I' 0 - f/ )V:~·'-= C,

By di{[l'l'I'litiatillg, \V,: olu.riu

rlll

dr.'

\V" Sf'f', fro II I t.ln: ('CJl1a-

t.iou of the ('111'\'(', that _Ij will

IIf' jl!la~illal'y fill' all valu.:«
of .t: ]..ss t L:I" r,

F"I' ,I' (0, w« h:1 \'(' .'1'/1 ;
and rIJr ," 0' (', wr: I,ave two

,,:lillf', or _II alld ('OIIS('-

'1"('lItl\, 1110 bl':lIWI",s of
---_.------- ------

IIII' "111\'1', 1IIIIil .r
1/ whun th"y ullitt: at till: point M,

For :I' ..» 1/ tlll:I": wrl] I,,: two IT:d ralllf's "j' y ;llId ('OIISe-

'111('1111\, two 1'1':IIWII('s of the curve. 'I'ho 1"'lllt ill, at

111,i,oh till' br:lIwlll's IlItI'l"S(·('1.each Iltlll'r, is (':ill"d a JlII/I-

flldl' 1)(1/lIf, alld dilfns frtJlli a ('liSP hy hein!!; a p"illt
of illl('rsI:c1.ioll illstead of a jJoilit of tallgellcy, At. Ill<:
ruult ipl« point 111 ther<: a ro two tallgl:1I1s, 011(: 10 each

hranrl: of Ihe ('\11'\'(', The one mnkcs all allgle with the
aXIS of abscissas, WJlOSC lallgcllt is

.r::-- :1.'-((.+ vJ---- C j- -----
2y:v-c
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the other, an angle whose tangent IS

149. Besides the cusps and multiple points which have

already been discussed, there are sometimes other points

lying entirely without the curve, and having no COllllcxion

with it, cXfTjllill!.\' that their co-ordinates will sati:,Jy the

equation of the curve.

For example, the equation

(fy~ - X':' .+. /J;),2 = 0,

will he satisfied for th(~ values
x = ± 0, Y = .f-; (); and hcur:c,

tIle origin of co-ordinates A,
satisfies the eqllation of the
curve, and enjoys the property
of a multiple poirr!, sinc(~ it is

the POilil, ()f union of two values

of ,1', and two values of y.
If we resolve tho equation with respect to y, we lind

± lel'- IJ
!I = ,1' \-- -- ;

It

and hence, y will he illl:lginary [(lI' all llC/!at.iv() values of
:J', and f,,1' all positive \'alllCS I)(~twccn the limits ,1' = 0 ami
x = I), For all POSillVC values of :r greater than V, the

values of y will he real.
Thc first dilferellllal coeflicient is

,{I/ :1'( :1.1' - 2/))
-;1;.-- 2-';~;;'(:t'--=-I;) ;
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or' by dividing by the common factor :1:,

ely _ 3:1/ - 21)
;;--;,-2/;;0", ~6)

and making a: = 0, there rcsulu,

which is imaginary, as it should be, since there is no point

of the curve which is COllSCCllt.ivc with the isolated or COIl-

jugate point. The dilIl:relilial cocflicicnn, of the hi.rher
orders are abo illlagill<tI'Y at the conjllgatc points.

150. We may draw tlw following conclusions from the
preceding dil:icllssioli.

bL Thl~ l'<i uatiou lI'i." 0,
!I:t' determines the points at

which the tallgl:1I1s arc parallel to the axis of ah:';cissas.

11/1
2<1. Th« equat.ion 'f) , determines the points of

deL'
tIle CIII'VC at \VIlie" till: tang(:lIls an: perpcndicular to the
axis of alJscis,-;;IS, '1'11(: two last (:(lliatiOlI8 abo determine
the cusps, if IJIl:m arc ally.

:Jd. The c(jUatioll

inflexion.
determincs the points of

4th. The equation dy _
-_ an imaginary COII:;tant, indi.da: -

cates a conjugate point,

13
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CHAPTER VII.

OJ Osculato1'!/Curves-elf Evolutes.

151. Let PT he tangent to the curve A HI' <It the ]loillt

P, and PN a normal at the sallie point; then will J''I'
he tangcnt to the circlIlllfercnee of every circle passing

through P, and having its centre in the normnl I'N,
It is plain that the cen-

trc of a circle may be
taken at Home point C,
so ncar to F, that the cir-

cumference shall fall with-

in the curve Ai' if, aillt

then every circumference
tle:-;nibcll with a kss ra-
dins, will fall entirely

,~ithin the curve. ] t is
also apparc~nt, that tile C(~lItre Illay he tak(~n at some poillt

C', so reIllote from I', that the CirCllltlfclTlIct: shall fall

between the curve AI' n alld 1I1(~ lallg(~II(. I' '1', alit! I hell

every circuIl1ference descnlwd with a grt~atcr radius will

fall without the curve. I knee, ther« arc two c1as:,<es of

tangent circles whi(:h lllay be described; the one lying

within the curve, and the other without it.
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152. Let there be
three curves, AI' B,
CPD, E1"F, which
have a common tun-
gellt 1'I', and a com-
rnon normal P N; then

will they be tangent to

each other at the point
P. It does 110t follow, N

A c R-'--jZ-J~'--- _,._-however, frolll this ci r-

Clllllstancc, 1Ilat each curve will huvr: an (:llwtl {/~lIIl!'lIcy to

c(jill<"id(~ wul. t.he langent '1'1', nor docs it follow t.h.u allY
two of the curves ()I']), l';PP, will have all ('(I'lal ten-
dency to coincide with the Ii rst curve Ai> H.

11. is now propo~cd Lo cstahlisl: the general analytical
("ol}(liti()n.~ which dl!tcnnillc tho ll'nd('III:Y of CI!rVcs to
cuincid(! with each other, or with a COllllllllll 1;lll~("IIL

j)(!sign:tte the co-ordinates of till: lirs! curve AI' n by

.'I.' and y, the co-ordinatc:s of t.he s"C()lId CPf) hy :Ii, .'I',

and the co-ordinates of the tlllrd I·; I'/<' by :1./1, .'/'. If \V.:

dcsig'nat.'! tlll! CUllIlJlOll ordinate 1'1( lly !I, !!" .'I", \VI: shal]
then ha 1'1:

IIH' ::.'1 '1- ~0_ Ii /_'Ell Ii! / d'y __ h'__+_ &c.,
tI:I.' I d:t:" I .~ d.,:" I. ~.:1

'_'.Y'. !', de,l Ii' d'lJ' ;":1sR' =c, y' +-- t - 1- ---- + &c.;
,/:,/ 1 iI,,/' I .~ ti:J' I . ~ . :J

Bill ~ill('(~ 1111: curves are tan~'elll to each other at the
point I', we have (Ari. 11 !l),

147

i~



148 ELEMENTH OF TilE

y = yl = y", and
dy __ d( _ q-y'!_ .
d,!.' Ii.~j _ d,li I .

hence,

1\ow, in order that lite lirst Cline A l' l] shall :t pproach

more IIcarly to the second CJ'JJ than to till, third RJ'[",
we must have

d«l',

nn.l C()Il~e<jllclltly,

A Ii' 1) hI & ' AI Ii' I"" I "
11_ + )_-- + c., "" • t-) - + 0[(;.,

1.2 1.2.J I.,.,. 1.:2.:1

ill which we have ]'cpre~elltcll the codlici(~lIts ill the first

scr rcs by ;1, n, C, &c., am! the c()cilicicllLs ill tll(~ sccollcl
by AI, 1f1, (;1, &c.

:-low, the liuiit of the lir~l uu.rulx« of the illt't!1lality will
ulw.iv» Ill: less than the lilliit of tIll: sccolld, w lnn Its lirst

term involves a. higher puwer of h. th.iu tll': til'st 11'J'1lI of

the ,;ec()lld. For, if A -- 0, till: tirst lllclllbcr will involve
the highest power of It, uud we ,;hall have

h' I Ii' J)/ h' &u- --+ &c. < A _- t- ) _- + c.
1.2 .:1 " 1.2 1. 2 .:1 '

and by di viJing by II"

h I 1 . h[$--+&('. <' A -+ /1'- +&c.,
1.2.:1 " 1.2 1.2.:3

and by passing to the limit
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° Af_l_.< 1.2

But when A = 0, we have

(fly d?yf
(1:1:~ _ d;_i~,

and hence, when three curves have a common ordinate, tho

first will approach nrarc r to the s(:cond than l.o til(: third,

if the numlJl:r of equal dljli~/"('//'Iilll cOI:/jicicn/;; /)('/I/)(:I'//' / he
first and second -isgreater tlur« tlutt. /)(;lween t lu: first. III/ll

tliinl, And consequently, if the first and SCCOJl(1 c.urvcs

have 'lit +- 1 differential c()dlicicnts which arc Cqll,t1 to
cuch other, and the first and third curves ollly 'iii. elJllal dif-

1,(,lltial coefficients, the lirst curve will approach more

ur-n rlv lo the ;;(;(:(III([ than 10 Ih", third. Ir,:nc(" it appears,

that tli(; order of contact or two CIlrVCS will dq)(:lId on

t lrc 1IIIIlIber of corn:sptllldillg- dillcreutia! cucllioicuts which
;He ':'1"al tu each other.

'J'h,: COli tact which rcs\!lts from all (:qllality bet.ween tilt:

("()-ordillatcs all([ tl", first ddfc'ITnti;d c()cJliciC'lIts, is called

a C()IIt:wt or 1I1('../II"SI IIrder, or a ~illlpl(' Lan.l.',clI('Y (Art. I [!I),

[I' the ~c("(Jlld dill(Tcntial c()(:flicil:llts :11"" alw el[ll:l1 11) c;«"11

(JIb"", it is called a contact or tlu- srcoiul order. [I' the lir~t

three ditlerenti»! cocllicieuts are n:spectivcly equal to each

other, it is a contact of the third orclcr , and if there arc ni
differential coefficients respccti vclv equal to each other, it
j~ a contact of the IIIIIt order.

l[)~l. Let liS now Sllpl'\)S(~ 1.11:11.the SI'('OIHI lill(~ is only

given ill species, .m.] that vulucs m"y l»: "Urillll1ed at

lJlca~ure to the constants wllich ClIter its (;<[lIation. \Vo
J:I •
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shall then be able to establish between the first and second
lines as many conditions as there are constants in the
equation of the second line. If, for example, the equation
of the second line contains two constants, two conditions
can be established, viz.: an equality between the co-
ordinates, and an equality between the first differentia
coefficients; this will give a contact of the first order.
If the equation of the second curve contains three con-

stants, three conditions may be established, viz.: an equality
between the co-ordinates, and an equality between the first
and second differential coefficients. This will give a con-
tact of the second order. If there are four constants, we
can obtain a contact of the third order; and if there are
m+1 constants, a contact of the mth order.

It is plain, that in each of the foregoing cases the highest
order of contact is determined.

The line which has a higher order of contact with a
given curve than can be found for any other line of the
same species, is called an osculatruc.

Let it be required, for example, to find a straight line
which shall be oscul.ucry to a curve, at a given point of
which the co-ordinates are x", y".

The equation of the right line is of the form

y=ax+b,

and it is required to lind such values for the constants a
and b as to cause the line to fulfil the conditions,

and
dy _ dyfl
dx - dal'"y = s".
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By differentiating the equation of the line, we have

and since the line passes through the point of osculation

dyy - y" = -(x - aI').
dx

dy . dyll
Substituting for dx Its value dal

"
we have

dyll
y - y" = dal' (x - aI'),

for the equation of the osculatrix.
In the equation of the circle

aI'2+ s'" = R2,

ely" _ ai'
etal' - - y"

we find

hence, the equation of the osculatrix of the first order, to
the circle, is

or by reducing

II x" ,Y - Y = - -(x - aI ),y"

yy" + xal' =R2.

154. If «- and (3 represent the co-ordinates of the centre
of a circle, its equation will be of the form

(x- «-)2 + (y - (3)2 = H2,

If this equation be twice differentiated, we shall have,

(x- ")dx + (y - (3)d!J = 0,

d:# + dy2 + (y - (3)J2y = 0;
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and by combining the three equations, we obtain,

(h;J. + rly2
Y - (3 = -- d" ,-y

x _ "'= r!J (dx.2 +- 'h/)
(i:J: dey ,

R=

If it be now required to make thi,; circle oSCIllatory to
a givell curve, at a point of which tIn: c()-ordillatc,; ;[I'(~ ;/',

y", we have only to sllbstitnte ill the three last cI[llaliulls,

the values of

dy rill d'y J'.'I"
rI:l: d,l:!/

, d,,:; ~-Ll/I:'
,

dedllCC(\ from the eqllatioll of thl~ ClII'Ve, ;lIld l.o slqll)(I~(', al

the sallie t.JIIW, tltt: c()-ordlll:l1,cs :J.' alld /I ill 1111; ('(II'Ve l()

hl.'colJl(; ('Ijll:t! to tlj()s(' ()f :1-' aud If ill tIlt, ('irel",
If \\T ~11i'i'0S(.' :/1, if", to IwgclII,ral co-ordillal",; (If thl;

curve, tlte (',11'('1,: will move around lhe I'III'VI.' alld In:COlllt.:

oscul.uorv to it, at each of its points III Sll('CCSSIOII,

],C ()s('(datory t() tIll: I:IlrVC

F F, at tIt<: pOllll I', we

shall h.ive
hi

qs --'r: / +: --- -- 1- &<:.,
I.;! .:l

fur" I"l"itlvl.'; alit!

1/'1
- --- l ~Ye.,

U!.:3q'sl = C /



1llI'FEllENTIAI. CALCULUS.

for h neg<ltive: hence, the two lilies qs, qfsf, have contrary

signs. The CIlrVI', tlwrdorc, lies al.ovc the osculatorv cir-

cle Oil one side of tlic point 1', und below it Oil the other,
and clm;;cIJ"cntly, divides the osclliatory circle at the point
of osculation. J iClICC, also, the osculatory circle separates

the tangent circles which lie without the curve from those

which lie within it (Art. 1;>1).

[II (:Vl'J"Y oscu l.u.rix (If an eve II order the first term ill the

val lies 0[' IjS, !/Sf, will, ill general, «outaiu all 1l1((:V(:nl'llwer

of h ; and IWllcc the :;igll;; ul' the limits of their values will

dCI,cnd on iluu of ft. The curve wJ!1 IIII:rdorc lie above

tlIe I)S(III:11rix. UII one side of tl!c puillt I' alld below it on

tlle other; and hence, (,Ilcry oscul at.ri»: 0/ lin 1'/)1'11.order
u.ill, ill sicncru}, IJCdivided Ily lite UI'J"'IJI: iu Ifte jloint (1'
O.\CI! lution.

(.T - ",)tfCI: + (y - (3)dy c.:c: 0

may be placed tinder llJ(~ Iortn

,(.1.'
.II -- p - ---d/t' - ",).

\\'II('n Illc eirel,: i~ Iliadc: o;-i(:III:ilory with the curve, the

cll-iJrdinall'~ .r: :111,]_II ])(,I:IlIliC the ("II-ordinaks of the: «urve

and til!: last 1"JII<ltioll n'IIl't:~t:1I1~ a. uorrnu l pa~:;illg Ihrollgh
the poi lit whose: cO-IIrdin:Il.c's an, a: and (3 (ArL 1~2~). Ilcnee,

tlu: 1/.11,-1//1" (1/-1/11'11 Ilim/I,e:-" tile pcn n]. I!F osculution, will
contain / It I' centre Il/ lu: ()snr/II/O/lj circle

1:)7. [t was SJIO\\'II ill (Art. I;,;;) that til(: osculatorv cir-

cit: is, ill gClleral, divided hy the curve at the point of oscu-

153
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Iation. The position of tho curves with respect to each

other indicates this result.

For, the oscillatory circle lK ulwuvs svmmctrica] with

respect to the normal, while the curve is, ill general, not

symmetrical with respect to this linc. If, however, the

curve is sYlllllIetrical with ]"('''I)(:ct to the normal, as is the

casl~ ill lilies of tho secolld order when the normal cuilwiues

with an axis, the curve will not divid(~ the ()sCIiLltOfY circle

at the point of osculauou ; alld the cOllditioll wllich 1"""d"r,;

the second ditlcrcuual cocllicicnts in tlw «urv« alld ('in-Ie

equal to each ot lu.r, will also rende-r th« third dijr<T(~lItlal
coetIicicIIts e<[lIal, and the contart will then he uf the third
order.

15", The radius of the OSCillatory circle

(ti,,"' + rI,/)"H = 1- --'- ~-- ._--
- d,n!"!)

is afre(,ted with the sig-II pillS or lllIIlIIS, alit! it Hlay be well
to df:tcrtllillt: tiIe cm:lIll1staIICC,; under which each si!.j" is

to hf: lISI'(i.

l f wr: slippose the ord iuutc to he positivI', WI' sllall have

(Art. 1:l:3)

,{'/I
;D~'

nc!-'.'ativc WIIl:!1 the curve is ('011I-an: towards tlll~ <lXIS of

ahscissas, alld positiVI' wl«.n it is (,OIlVI", If thcu, we

wish tlw radius of till' ()sclilalory rinl.. to lw positive for

ClIrVI:;; w lur.h are C()II('aVI~ towards 1111:axis of ah~t:issas, we

must f~IlJi'I{)y tlw IIIIIJI[S )ligll, ill which case the radius will

be llegative for curves which are convex.
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159. If the circumferences of two circles be described

with diflercm radii, and a tangent. line he drawn to each, it
is plain that the ("irclllHfcn~n('.e which has the less radius
will depart more rapidly [rum it,; t.angent than the circum-

ference which is described with the greater radius ; and

hence 'we say, that its curvature is l!,''I'l'uler. And gener-
ally, 111.:Clirvatlll'l~ of any curve is said t.o he greater or less

t.hun that of ano! her curve, according as its tendency to

tkpart from it,; tangent is greater or less than that of the
curve with which it is compared.

1 (jO. The curvature is the same at. all the points of the

s.unc ('ir(,lIlllrnencc, and also ill all circumferences descrihed

with eqllal radii, since the tendency to depart from the tan-
gent is the same. J II different circumferences, the curva-

tur« is measured hy the allgle formed by two radii drawn

thr()ll!!;!t the extremities of all arc of a given length.
Let r all(1 r' designate the radii of two circles, a the

kllgillof a given arc measured on the r.ircumfurcnr:e of

ea('h; c the angle formed by the two radii drawn through
the extremities of the arc in the first circle, and c' the
IIlIgle Icnnud by the correspondillg radii of the second.
We shall then have

21rr : a :: :360° hence, 3600ac, c ----~- ;
27fT

d, hence,
36()0 ac'=~~-'
2'1r'r' '

1 1
r 7'

also,

2 'lr'r' : a :: 360°

and consequently

c r!
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that is, the curvature in different circumferences varies
inversely as the radii.

161. The curvature
of plane curves is meas-
ured by means of the
osculatory circle.
If we assume two

points P and P', either
on the same or on dif-
ferent curves, and find
the radii rand r' of the circles which are osculatory at
these points, then

1 1
curvature at P : curvature at P' :: -;: : 7";

that is, the curvature at different points varies inversely
as the radius of the osculatory circle.

The radius of the osculatory circle is called the radius
of curvature.

162. Let us now determine the value of the radius of
curvature for lines of the second order.

The general equation of these lines (An. Geom. Bk. VI,
Prop. XII, Sch. 3), is

y2=mx+n#,

which gives,

dy = (m + 2nx)dx,
2y

iPy 2ny dar- (m+2 nx) dxdy [4ny2- (m+ 2 nx )2J £lx2
2~ = 4t
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Substituting these values in the equation

we obtain
3

) (4 (m.r + n.l,:2) + (rn + 2u:I:n·,
[\.= "

27W

which is the gelleral value of the radius of curvature III

lilies of the second order, for allY uhscissa x,

163. If we make a: = 0, we have

1 W
R=-1n=-';~ A

that is, ill lines of the s[~cOlI(I order, the radius o] CUI"I'(/-

tur« at the nrrl r.i: of llu: t runsrcrs« axis is equal to half
the ]lfIrll1neler ofthat a.cis,

If he required to filld the value of the radius of curva-
ture at tho extremity of the cOlljugate axis of all ellipse,
we make (All. (;COlIl. Ilk, v III, ('rop. XXI, Sch. 3),

alld

which gives, after rcduciua,

hence, tlu: 1'(1Ili:US (if CUJ"1JalilJ"t: at the nertc» of the conju-
~ate a.ris (if an r:iliJ)sC is cqua! 'f) halj tlu. parameter (if
ttuu axis.

In the case of the parahola, in which n = 0, the general
value of the radius of curvature becomes

11

157
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lIll. If we Cl)lllparc til<' v.rlu: Ill' tlJ(~ r"dill:; (If curvature

Will, that of the JlOrIlJ:ti li:1I' {"IIII" III (Al'l. J l x), we shall
ha\'c

1
11/,"

1

that i:;, flli: n/llill.\' 'I ('IIITllfll"/' 1/1 Ililil jiIJillt is /"/111// Iii

/ Itt: (/11)(: fir IItt: lI/iOIII/I rllI'Ii/",1 Illj !tllil ///1' jJlIUIIIU'li,/,

'<:71111(1''/.' :II"! jJ('II(T, 1//1' 1'I,,/il 'i{ curna tu rr: 'It rlll/i'u'lIl

jlollils "I' 11,/: .1'1111/"('IIi'/'" (/,'/' l o /'(/( I, ot ltrr (IS II", ('1/1)1''\ o]

t l«: CI)/"'("\ii!}I"llil:~ 111"'/11'1/.1',

lljG, rr we ~\ljJpl):;,' a (Jr-

(';,; to 1111)\1: al(dl~' :llIy 1'111'11',

a,,,; ,1/'/" Il, :tlld II) I,,; (1,'11-

latory til it at ,,:[('11 "I' ih

lJlllllh, III ~llI'<:t:~~II)II, 11",

,'II I've A N i~ (';ill,," 1),,; II/-

FIJi/II' ('111'1", all,[ tit<' ,'111\';

('( "( 'I:, d",,'rlih'" 11\' 1111;

('1:1111'" "J till' 1I,,,,"lIht.,r\' ,'11'-

rl«, I, (;;dl,',j till; ITo/llle

curn; ,

(:
,\-'---
, ('

If

\
I

/

lIi(i, TIll: ('o-ordi,I:i1,'-; of' illt, (T111re of till' o:;nil:ll(Jry

circle, which l,al'I: 1)('('11 1', !,I"'"''II1,''' 11\' '" :ill,] (\ arc ('1111-

stunt for gl\'l;ll V:tilll',"; (If 11:.: ""-,,)'d,,,ili>-, ," :lIld :'I of tiro
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involute curve, but. they become variable when we pass
from one point of till: involute curve to another.

}(i7. 'I'Ve have already seen that the osculatory circle is
characterized by tho equatiolls (Art. 154)

(x' - ,,)~ + (!I ~~ [3)' = le, (1)

(:C--I)(.)d:r-t (/I-(3)dy=O, (2)

dJ,:l I- d!/+ (.'1 - /3)(fy = O. (:1)

H it be required to lind the relations hetween the co-

()rdillall~s ur the iuvoluto .uu] 1.11\:co-onlillat.t:s of the

cvolut« curves, WI! must dilTcn'ntiate CI[U:ttiollS (I) and (2)

under thl: suppositioll that I)(. alld (3, as well as :1: and y,
an: v.uial.k-s. VVc shall then have

(,/; _ a)d:1.' + (/I-~ (3)"11 ('l: I)(.)dc< -~ (/1- (3)d(3= RdR,

d,t"! + liy" 1 (1)- (3)J'y - dl)(.da.'- d[3dy= O.

Cumbining these with equations (2) ami (:3), we obtain

- (y - [3)d(3 -- (:c- «)t!1)(. = HrlR, (,1)

--d"d;,: -d[3dy=O.

The last (:qll:ttiOIl gi vcs

d (3 il»
dc< "II"

But eqllation (2) !ll;lY he plaC\:d under the form

(5)

whic]: represents a normal to the involute (Art. 122), and

J
. I 1 1 1 - . 1- d;1,' - 1 tI(3w lie I JeCOIllCi:\, )Y ~\1 )stltuttng or - -( Its va LlC -,

Iy ill)(.

159
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or d{3
fo-y=-(~-X)

det

This last is the eqlLation of a straight line passing

through a point whose co-ordinates arc :1: and y, and tan-

gent to the curve whose general co-ordinates are ~ anr] (3;

hence, a normal line to the il/lJulate (:UJ'(W is tangent /0

tlu. euolute,

WH. J t is now proposed to show, that the rad ius of cur.
vature and the cvolut« curve have equal diffl)rclitials.

Combining cq nations (~) alld (!j) we obtain

or by squaring both mcmlrcrx,

" '" det~(:1' - "')- ( Ij - (3) " ;. d{3-

combining this last with cqu.uiou (I) we have

(H)

Combining equations (/1) alld (7), We have

(!",'~
-(1J1 -(3)d(3-('j-f3)-- c:.: RrlR,. d(3

or



or by squaring both memiJer:;

(,la:l 1- r!p,"f ( )" --1'"( 11')~_------- 1/ - (3 - .. ( .. •
d(3' .

j)ividill~ lliis last. by cqll'lt.ioll (,,), mcrnhcr 1)y member,

we huvc

llf '{N

But if s rcprcsclll,; t.11l:arc or tl«: (lvolllll: CUrV(l, of which

the co-ordinutcs arc '" and [3, we ,;ll,dl have (Art. 12t:1),

hence, d l]. = tls ;

tl"lt. i:" tlu. di[li'/I'illi(tf oj' the Fad ius (!( curoaturc is (ylwl
/1) lite di/j(:rcllfilll (f 'hi; ar« oj'I/I(' cootu'!:.

1 Ii!). IL does 1I0t follow, however, Irom the last equation,

th'l! tll\: radius of curvature is ll([llal to the arc of the cvul uto

curve, hilt. oilly that one or them is (l(l'lal to the other pillS

or uunus it constant (Art. 22). IIcncc,
R=s-l-a

IS the form of the equation which expresses the relation

between them.

Hi1

J
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If we det.enuine the radii
uf curvature at two points uf

the involute, as P and P',
we shall have, for the first,

it = s + 11,

and for the second

H' =s' +a;
hence,

H' - N =-_ s' - s == C'C";

and helice, t lu: (/ij/i'/"I'III"I' 11f'111'1'I'1i t li: rl/Jii /I{ ('/11'1'11/111"1' lit

£111,/ tioo pouu« (!/Ihl' 1/11'1)11111' 1,\ ('IIIIIt! III t h« JIIII"I (I{ t.lu:
ei-olute cu rt:«: 1'111/'/"('1'/111''/ /,,'111:('1'/1 1111'111,

170. The value or tl,,: t:(>II~I:!lIt II w ill <1"1)('1111 Oil tile

po-ition of th« ]loilll (mill wlli,'ll IIJ(' <II',' ,,f' I)IC ,'V())III"

cu rv« is ",'tilll<lk./.

If, for ('.\'!Trlp)!', we tilk" Ilw 1'<1'/111., of ('111'\'<11111'1' for )III('S

of tho second crd,,]', ;tlld (,slill,:!I!: II .. , nr« of th« evolui«

curve from t lu: point al \Vili,.}1 it pI<-Cis II", axis, Ilw v.uuo
I

of swill Iw 0 whuu N '''' ;; I/{. (:\1'1. Iii:!): hellce we

shall have

1
--lI/.=() 1(1
~

and for any other poillt ()f the eliI've

or (t, ---iii;
~

sf _ III.
~
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Either of the cvolutcs, Fe,
FE', F' f.", or [.'! t: COITC:;-

pOllllillg to one quarter of the
ellip:;c, is c(I'IaI to (Art. 1G!J)

112 Ir
~-- ..---
]; II

171. The cvolutc curve takes
its 1I:111I(~from tlu: COllllcxioll which it Ita" with the cones-
pOllliill!.',· involute.

Let ('(,'i( /' lie all l:v(Jlnle

curve. Ate draw a tall-
g(:llt 11 c, :1I1<1muko it. (·.qllal

10 th,; C()II.,t.allt II ill the cljlla-

tiun

H -.1'111.

Wrap a thlcad A cc elf
<lflllllld tin: «urv«, alld f'a~tl:1l

it ,d. .ui v p()illt, a.~ C",
'['111:11, if we lJC!_\ill at ii,

~.

//~.. \
1'/ :

'\,
\'\\

and 1I1I\\T:lp or I'no/I'e t.he

thrcad, it. will tuk« tile pm;niolls /'C', 1"(;", &c., and the

point A will descrilie till' iuvolutc A VI": for

PC! - A G= L'(," and I" elf - A c --',ee' C", &c,

172. The: eqllatioll of the «volute lIlay hi: n:adily Iound

by comhillillg the equatiolls

ili/ (d'l.·:~+ till)
:1: - ~ ---- - .' -'-'--~-:J.~-'-- ,

(/:nl'Y

with the equation of the involute curve,

163
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1~1. Find, hom the (;(lll,lliull of [be iuvolutc, the values or

awl d"y,

allil Sllh~tj(lIlc thelll ill the t wo last t:'jllatll)llS, <LIHI there

will l.e ()1)t;lIll1',ltw{J II'·W "'ill;t1I"II~ IIIV,,jVIII!2, «0, (>, ," ,IIHI y,
~", C()/Itililll~ th«-«. "'JII,ili'''I' \\ lilt ilJ(: '''III<ltll)11 or til(:

iIlV(JIIII,', alld (,]IIIIIII,ilt: .r ;llid .'I: tI,,~ r".'ILilill!2, '''JII;ltioll

will CUlltaill «0, 13, ,llld ""llslalli.", ;111" wdl 1)1: IllI: "'[ll<llioll

Ilf 1111: cvoluto «urvc.

17:3, Ll'1lls t;J!"" as all c.\;[nll'lc, the COlt!IIIOII par,d)t)i;r

I)f whicl, the c<jllalioll IS

\Ve ~llall then have

till 1/1,
---_ - -----,
d,!.' ~ Y

and hence

and by observing' that the value of :1.' - '" is equal to that
d/lof !I _ f3 multiplied Ily --;L.,' we have

hence we have,

and 21/ 71/,:/'-'" = -_._-
'lit 2
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substituting for y its value ill thc equation of the involute

I ,

Y = lIt"X",

we obtain
3

4J.'"
-f3=--, ,

rrt-~

m
x-<t.= -2x--;

2

and by eliminating x, we have

which is the equation of the evolute.

1 f we make f3 = 0, we have

)
«. == 2 ut ;

<tlld hence, the cvoluto meets tho

axis of 'Ih,.;cissas at a distallc(~ from
the ori,!.!;in eqllal to half the paralll-
C[('I'. If till: origin of co-ordinates

1)(~ trallskncd Irom 11 to this

)lOillt, we shall have

«/ ~ a - -In
2 '

alld COllsequcllt1 y
~ Hi nf3 =-·-a'.

~7m

The equation of the curve shows that it is symmetrical

with respect to the axis of ahscissas, and that it docs 110t
extend ill the diruction of the Ilegativc values of «.'. The

cvolut« C( Y corresponds 1.0 the part A P of the involute,

and C (:" to the part si«.

165
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CHAPTER VIII.

Of Transcendental Curves.-Of Tanqeu; Planes
and Normal Lilies to Swj(lC/;s.

17,1. Curves lIlay he divided into two general classes:

l st. Those whose c(pL;tlions are pltrely algebraic; alill

2dly. Those whose cqlLaliolls involvo lL';1IISn~lId(,1l1al
quantities.

The lirst class are called algclmlic curvr.s, ;[11.[ th(~

second, transcendental curccs,

The properties of the first class havillg IW('01 already

cxamiucd, it ollly remains to dISCIIS~ tlu: prulH'rli(:s of IIID

transcendental curves.

Of the Logarithmic Curve.

175. The iogari thmic curve takes its name from the

property that, whcu n:fcrrcd to rectanglilar axes, one of

the co-ordinates is cq'lailo the logarithrn of the other.
If we slippose the logaritlllllS to he estimated ill paral-

leis tu the axis of Y, and the corresponding numbers to
be laid off 011 the axis of abscissas, the equation of the

curve will be

Ij = 1::1'.



lllFI"F.RENTIAL CALCULlJ~. 167

17(). If we dc,;i,!!,llale the
IJase of a ~y~tcltl ()f ]()ga-

ritluns by 1/, we shall have,
(A Ig. Art. ;![[)

(f'l I"~,

;IIH\ if we ('ilallgt~ th« valu«

of tlte base II to {(', we shall
];;1 \'1'

11 i,; 1,1:1111, 111:iI IIi!' s.uno value lIf .1', ill tho two cqunuons,

Ildl !.lIlt t!Jlli'lt'llt vn luox ()f.'/, alit! }J('II('(', 1/'('l.'} ,\Ij-'/('lIl /~J
1":.:,rui/I/IIS H'111!_>,'II}e II rill/iT/'111 /1I!,III'I//lllli(: ('III'(W.

If' III: 111:lk" y 0, wr: sll:"1 h.iv« (AI!". Art.. 2,10)

Ill(' sy,;It:1l1 ()llugarithlllS, it follows, titat ('I"'I'y/u!',tlril/IlIi/(:

1'111'1'1' will ill/ersect. lit" 1I;):i.\' i!l numlu-r« II/ It dis/uIICI: [rou:
II" /)0",111 1'11'1111 III 111111.'1.

'j'II" t"111;11 itlll

all --- :r,

will (:11:lld" II:; to d('snih(~ l\r" «urv« I)y poillts, t:VII!l with-
out tile :lId of a t:d"e of l()gal'iIIIIlIS. For, if \V(I make

&c.,

:t' 1, ,1:- a VII~ .xc.'r':/::::::Vii

177, If we SIIPi'0';!: tlw J.:rSI~ (,1'111(: "yslt'HI (,f ]o_!.;al'llltJlls

to be grc:ll<:r than uuit.v, the 1II,~',:lrilitllls lie all uunihcrs lcSH '

\ ~

I

J
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than unity will be negative (Alg. Art. 2:l9); and therefore,

the values of y eorrcspondillg to the abscissas, between the

limits x==O and x=AJo;=I, will be negative. lienee,

these ordinates arc laid off below the axis of abscissas.

When x = 0, !J will be infinite and negative (Alg. Art.

247). If we make x negative, the conditions of the equa-

tion cannot be fulfillcd ; and hence, the curve docs not
extend on the side of the negative al)scissas.

178. Let us resume the equation of the curve

y = I».

If we represent the modulus of the system of logarithms

by A, and differentiate, we obtain (Art. 5fi),

d Adx!J= -,
x

or dy A
dx x

!l1j
But --'- represents th(~ tangellt of the angle which thedx

tangcnt line forms with the axis of ah:;cissas: lienee, the

tangcnt will be parallel to the axis of abscissa" when
x = a: , and perpendicular to it when .'1.' = o.

But when a: = 0, .IJ = - 'f" j hence, the axis of ordinates

is an asymptote to the curve. The tangent which is

parallel to the axis of,! is Hot an aSYlllptote: for when

a: = iJJ, we also have s= .f) •

179. Tho most remarkable proppl'ly of this curve he-

longs to its sub-tangent 1'1H', estimated on the axis of

logarithms, We have found, for the sub-tUJlgent, on tho
axis of X (Art. 111),
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'i'R d»t = --!},
!ly

and by simply challging the axes, we have

helice, 1//1; .I'1l!J-III/I,!!,'I'/l1 is 1"/IlII! to tlu. niodulu» (f the
system of 1li,!.:ilrithms .Ii '11711, which tlu: ('W"'Je is construcu-cl ,

III the Napcl'I<lll sYSt.CIIiAl ~,C 1, anrl heuco til(: suh-taujrcnt
will be equal to I ::= A g

eif the Cycloid.

U II

\{
t.

11-)(), If a ('irel!: N tc he rullul along a straight line

;1 l., allY ]loint (If 1111: (',iITIIIlIJ"'I\'III:C will t!(:,.;cri!JI:a ('111'1(',

II hJ('it is c;dll:d a ('y,I(Jir/, '1'111: ('irell: N /'U I"; ('allel: the

i.!,'t;II(Tlllill!!, 1'1,,11', ,UIII I' Ihl: ,!!,I'/II"I'I/Img IlIJillf,

II i~ 1'1:lill, tll:!1.ill (:aeft rc vol ut.iun of the g'''III:ratillg ('Irele
all (:Iill:d rurv« will 1)(: t!(:,.;r:rihcd; alld II"II(T, it will only
he 1I1:('('ssary to c xuuu ur: 1,111: prol'crLi.:s of t hc curve

A J) H J" descrihed ill (llie revolution (If the g(:lll'ral,illg ('in'le,

\\'1,; shall llwrdf)['(: rdiT ollly to tills part. when speakillg
of the cycluid.

11-)1, If we SlIppose the )loillt ]) to 1)(: 011 till: line 11 I.
at A, it will he fuulld at sOllie point, as L, after all the

15

16U

J
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points of the circumference shall have been brought in
contact with the line AL. The line AL will be equal to
the circumference of the gen rating circle, and is called _
the base of the cycloid. The line BM, drawn perpen-
dicular to the base at the middle point, is equal to the
diameter of the generating circle, and is called the axis of
the cycloid.

182. To find the equation of the cycloid, let us assume
the point A as the origin of co-ordinates, and let us snp-
pose that the generating point has described the arc AP.
If N designates the point at which the generating circle
touches the base, AN will be equal to the arc NP.

Through N draw the diameter NO, which will be
perpendicular to the base. Through P draw PR perpen-
dicular to the base, and PQ parallel to it. Then, PR=NQ
will be the versed-sine, and PQ the sine of the arc NP.

Let us make

AR=x,ON=r,

we shall then have

PQ= v'2ry-y2, x=AN-RN=arcNP-PQ:

hence, the transcendental equation is

x = ver-sin-1y - v'2ry - y2.



------

DIFFEItEN'l'IAL tl:ALCULUS.

183. The properties of the cycloicl are, however, most
easily deduced from its differential equation, which is
readily found by differentiating both members of the trans-
sccndcntal equation.

We have (Art. 71),

d( . -1 ) ·rdyver-sm y = ,
"';2ry _ y2

d(- v'2ry _ y2) = _ 1'dy - ydy :
''';21'y-y2

hence,
dx= ra.y _,"dy-ydy_,

v'2ry - 1)2 "';21'1) _ 1)2

dx=- ydy ;
v' 21'y _ y2

which is the differential equation of the cycloid.
184. If we substitute in the general equations of (Arts.

1l'1, 115, 116, 117), the values of dx, ely, deduced from
the differential equation of the cycloid, we shall obtain the
values of the normal, sub-normal, tangent, and sub-tangent.
They arc,

normalPN = vz:;:y, sub-normalRN = ';2ry _ y2,
y~ y2

tangent P T =-----,' sub-tangent TR = ./_ ----:."';2ry _ y2 Y 2ry _ 1)2

or

These values me easily constructed, in consequence of
their connexion with the parts of the generating circle.

The sub-normal RN, for example, is equal to PQ of
the generating circle, since each is equal to v'2ry _ y2 :
hence, the normal PN and tho diameter GN intersect
the base of the cycloid at the same point.

171
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Now, since the tangent to the cycloid at the point P is
perpendicular to the normal, it must coincide with the
chord PO of the generating circle.

If, therefore, it be required to draw a normal or a tan-
gent 'to the cycloid, at any point as P, draw any line, as
ng, perpendicular to the base AL, and make it equal to
the diameter of the generating circle. On ng describe a
semi-circumference, and through P draw a parallel to the
base of the cycloid. Through p, where the parallel cuts
the semi-circumference, draw the supplementary chords
pn, pg, and then draw through P the parallels PN, PO,
and PN will be a normal, and PG a tangent to the cycloid
at the point P.

185. Let us resume the differential equation of the
cycloid

dx= ydy ,
V21"y- y2

which may be put under the form

If we make y = 0, we shall have

dy_,....
dx-VJ,

and if we make y = 2r, we shall have

dy_
dx-
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lu.ncc, the t;lllgt~llt lilies drawl! ttl tIle cycloi(l at tIle POillt::;

\\ here LIle «urv« 11ICIOtsllu: ha~(', art: (Jr,rpclldlClilar tl) the

\)a,(·; ;lIJd tlt(, tall!..',cllt .lr.iw u thr"II!..',1t the cxtrunutv of the

.!!'ll'atl'st ordillak, IS l'ar,t1ld tf, thl: hast'.

l~ti. Jr \VC dillcrcntiut« tltf; l"illatioll

,/", 1/" 1/

V~21/1 . _II'

or I.y l'cdll('Jll!..', ,lIld divitilllg hy .'I,

0= ('1, 1'.'1 - y") r/'yl- )'(/.'1",

d'y

iliid 11I'1I(,t, till' cycloid IS ('.olwav\: towards the axis uf
alhl'i,s"s (,\1'1. 1:1:1).

1"7. T() lilld tilt: r-v .. lllt" of till' 1'\'('lolti, 11'\ liS til'st Sllb-

stitillt: ill till' gCIIt:ral value of

(<I."e: i· "/I")"
dJ' .r'y

the value of dAy found ill tho last urticle : we shall then

have

ItI'lIl't', tIll' r.ulius ()f curv.uur« ('orrt'SI'''lldlll!..', to tIlt: ('\_

t rr.uut v (ff allY ordillal<: .'I. IS t"illal to d'"I"lc tIll; Iltll'lllai.
1'-,'
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Tl~~ radius of ru rvutur.: i,'i () wlll'll u= (), alld equal to

twice tilfO diamcur of tlll'!.i"II''J'<ltlll,~~ circle for y ~r.-
lu-n.:«, the !ellglll ,,1' II", ('I',,jllte ,'III'IC frolll 11 tIl AI is

e'lll;d to t wir:« till' dl<lllll'lI'r o l tlJ(: !2."III'r;illll!!,' (:11'1,1",

Sllb~lillltillg til" vulu.: of d'y ill the vulu.--, of _II _.(3,

X -- ct (An 17~), II'; ul)l;lill

!/-f3 :2 .'I,

11 = - (3, X'

Sllhslllillill!.\ thl'sl' \';)III('s ()I .'I ;)11<1;)' ill IiI<: tr;I1I,"I:CII-

dental e(lllali()11 of tlw c~('I()ld, IIC ll;111:

wln.l: i~ til<' IrallS("'II<II'liI.t1 ("JII;ilIOIi or til!' ('1"1111,,, 1<:_

fcJ'((,,J II! Ill" i"ililitilc I)J'I:!III ;111<1111<'1)11/llllil' '1\,',.

),,'111,' II<)I\' 11''11''-

fIT I lu: OJ'10,111of ,'1)-

1:0-;, in- ..:tl';ld jd'I',....:1!JI!d-

u II!!' 1.h1'111 1'1" III IIII' .\' '

,
/

./

\
!

onli/l;il"~ 11)11", 1","11

AI, '111<1 ('h;III~" al

th« sallll' IIIII<' II",

dinTI i()lll!j till' I" ,,,i-
1.1 \(: ill IS' '1":'1:';: tll;11

(~
!
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:-->illccA'X' t h.: S('llIi-('IITIIIlIl'crcllce ()f the g(~II(~-,

ratilll.\ ('irci(', '.\ Ilicll IS ("Iltid to 'pr, we shall huv«, lor lilC

ahsClssa /1' N' (II' :llIy poilll 1",

)('tv: (3' :2 J' - (-- (3) :2 J' I (3,H' ,,; - t" I,;

- :!!' I (3' , :!r - (3',ur r-:-- (3

:-->IILslillilill,1'; till's(~ Valll('S or '" and f3 ill the trausccn-

delltal c,[llati(HI or lite cvoluu., we obtain

or (3')

Billtlw ;11'1' \\llos(~ v('rs(:d-~IIII' i~ ~2J' -- ,13', is the slIpplr:-
mcut (If' till; a 1'('. wliose v"rsl'd-:,ill(~ is (3', h('n('(~

wluch IS tll(~ ",!llatioll or ill(~ ('Volllt(~ rcrcrrcd 10 tli« new
origlll alld new ;I\(:S.

I\lll lhis ("I"illioll IS or till' Salll(~ 1'01111, illl!l involves t ho
sallie t:()IISt:lIlt;-; as lhat (II' l.l u: involuto : 111'11<:(', tile c\'1I11l1c

alld involute aJ'(~ "'l"al r.u rvrx.

(!I ,"'pinr/s,

I H,,<, ;1 sf'lm! is it (,IIJ'V('. dc~nill('d hy a I'()illl wlurl.
IlIOV('S ;doll,!.!;a IIp,lil liu., ,J('I'()r<iillg to allY I;I\V \\!t:llt:V('J',

tlw line It,tvillg at till' s.uu« tiu.« a 1IIIiL'I'IJI ;lll~J:ldal' IllUlioll.

175
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Let ABC he it s[r;lIl!iJt

11IIe which is If) 1)(; tllrlwd

\llli I, IrllJi y ;(r,,11 I Il I Ihe

j'UI I It J. \\" hell till!

III "[I ou (Jf till: I i III~ 1)1:-

ELEMENTS UF THE

gll!.S, let liS SIII'PO",'~ a
jlf)1II1 11) 111f)1(; CrOll I A
alull~' t.!1<! 1111(; III Ilw

dm'ctioll .1 nco \\'11<'11
tbe 11Ij(~ tak,~s IIII' P''''I_
11011A /)/'; tiJe 1'''1111 \Viii

11;1\," IJI<)I"o[ ;duli!!; II III ~()IIj(' 1J()IIIt. as l ), nn.l will hav(:

d,'s"nl",,j III" ;lJ',' :II//) "C IIJ(: ~1>llal. \\11"11 Ilw IIII'~

lak,'s lijl' 1)(ISIIIIIII :1/)'/,;1 t ln- 1"lillt II ill kl\" '],'sndll'']

lit(: .urv« .11//)/)" ;til " Wb('11 tlw 1111<::,II;tll 11<111' (,,"111'1,,-

[",] ;111 "11111" 1I'\"']It1.]I)11 t lu: pUlllt will I"l\t' ",'''enl",'] tl",

('111'1'" ill//)/)' fl.

'I'll(' l)ulIlI ,I, ;Jillllil wl,wh IIII' rrulil III!" 111<11(',:, i,s

(,;,1),," 11j(' j!li/I'; IIII' ']l'1all('I''' il IJ, ,I f)', ,I J:, arc (';dl,,"

nll/IIIS-I'I" /IIn, alld Ii' 1111: J'I'\,,,I,lllIill,'; uC III,' 1';1"'110'-1'.. , I'll'

an' I'lJidlllll(,d, 1111' P"lJ('ratJllg' p"illl will .!,",wnl/(' all II!-

(it-li"il<: "I'il:d, Till: I'alls 111//)/)'11, /11-'/-"1(', """lTiIlt'd III

('a,11 1"'1"111111)1,, ;HI' (';dll'd S/,I/I',I.

I·"!J. IC willi tlw 1'111,' ;t.'; a ''('11111', ali<! .1 tt, tit" ':1"I;IIIt'I:

VIS"'" "1)'1' "v II", ",<111'1':11111:'.1)""1i 1111111:dlr<"'li,," III' 111<1

r"dill"-I'TI"r dill'llIl! IIII' lir,1 1111111111<111,",s ;1 LIlIIII" WI:

,1<-'11'11", Ill<' "11"11111("1" Ill.,. It l-lt", IIJI' ;111~',I";lr 111I>li"ll ,,1'
IL,' r.« 111"-I)'('I"r ,,1""11 t]." 1'111,' ,I, 111;1)' III' III! i1'III,'d Lv
[iii' dr, lit' t!:I, , Ir,'I,', "'lill"I"'.r 1'1'11'11I:.

1i \d' ':","1:'11,,11: II", 1"1,]111':-1,'('1111' "v /1, ;111,] Ilw IIW;I~lIr.

Illg .u r, (',11111111",] Crl)111 l], I,y I, t1J(~ ({'];I1IIJII IJI'IWl'(~1l II
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and t, may ill gennal he expLT:;~cd hv the cquutiou

II _ at",

ILL which n. dq)(!lIds Oil the /1/'/1) accordillg' to which the

gClleraLLng puillt III()VCS ;dollg t.ll(~ radius-vector, alld a OIL

tlw rc l.u.iun \VIiiI'lL ('xists bctwcon a gLVCLI value of u. alld

tl](: corr('~p(JIJ(lillg vallJ(~ of t.

1qO. \VllCll II. IS positive t.Ill~ spirals represented hy the
CIPlati(j1l

will pa~s throll,!._rll till: pole A. For, if we make l =-c 0, we

shu!l have u =-. O.

Hut if n i~ n(:gativ(:, thc c'J'latioll will he come

/I
(/,

Ii :c= i" ,or

()

for

ftll" I __ 'F! :

.. 0,

hl'II(T, ill ti:i, ('1;lss of spirals, tit,: Ii rst positiolJ of the

gl'llI'r;t1I!I!_!, p()I!li is ;It ;111 ililillill'. dis1:lIl(,(: frolll th" polc :
tli<: POlllt will JWIJ ;IPI'I"I>;II'II 1111'.pole ;IS t.Iw ru.lius-vcctor

lTvoln's, .u«] will only I,("tch it after all iulinit« nuruhcr of
re\"(Jillli'IIIS.

I ~ll. If we make 11 == 1, the 1:(lIlaliull of tlw spirul be-
comes

U (fl.

]f we d(:si~.!,lJalc two difTi'.rcllt radius-vectors by 1(' alld

u", and the corn:spolJdillg' arcs by [' aud t'', we shall have

u' = 11[', and u" = at",

177
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and consequently
u': U":: t': til;

that is, the radius-vectors are proportional
ing a1'CS,estimated from the point B.
called, the spiral of Archimedes.

192. If we represent by unity the distance which the
generating point moves along the radius-vector, during one
revolution, the equation

to the measur-
This spiral is

u=at,
will become

1
1X -=t.a

1= at, or

But since t is the circumference of a circle whose
radius is unity, we shall have

1
-=2?1",
a

1a=-.2?1"and consequently,

193. If the axis RD, of
a semi-parabola BCD, be
wrapped around the circum-
ference of a circle of a
given radius 1', any abscissa,
as Bb, will coincide with
an equal arc Bb', and any
ordinate as ba, will take the
direction of the normal Ab' a'.
The curve Bol c', described
through the extremities of the ordinates of the parabola, is
called the parabolic spiral.

The equation of this spiral is readily found, by observing
that the squares of the lines 1/aI, c eI, &c., are prop or-
tional to the abscissas or arc Bb', Be .



DIFFERENTIAL CALCULUS.

I e designate the distances, estimated from the pole
A, by u, we shall have b'a' = u - r: hence,

(u -r)2 = 2pt,

is the equation of the parabolic spiral.
If we suppose r = 0, the equation becomes

u2 = 2pt.

If we make n = - I, the general equation of spirals
becomes

or ut=a.

This spiral is called the hyperbolic spiral, because of the
analogy which its equation bears to that of the hyperbola,
when referred to its asymptotes.

194. The relation between u and t is entirely arbitrary,
and besides the relations expressed by the equation

u = at",
we may, if we please, make

t = logu.

The spiral described by the extremity of the radius-vec-
tor when this relation subsists, is called the logarithmic
spiral.

195. If in the equation of the hyperbolic spiral, we
make successively,

t= 1,
1 1 1

-2' =3' =4' &c.,

we shall have the corresponding values,

u = a, U= 2 a, u = 3a, u = 4a, &0.

179
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Through tho
pl)l'~ /1 <lr;1IV II/)

j)crpclId icular 10

11 IJ, and make

it (~cl'lal 1<) II,'

then t1lrl)lI.'-\ll /)

draw" ]>otrall,,1

("

to A 1J.
any pOilit 1)( llw

spIral a:i J' dr 1,1' JIJl[ pcrl'CII,jll'ltl,lr tl) A11, we shall
then have

IIIf we substitute for u its value -, 11'1: sh;dl have
I

Nr I I' , 'I I ' ,~ill t 'IIj ow as tiC arc t ( IlIIIIllS II''', I Ie ralH) ui 1\1 ;IP-
I

proa('h t() uuit v, alld tIll: I,t/IIC ()f tilt: ordlllal<: 1',11 wi.l
Clpl'roadl tl) II or (';\1: IWIIIT, II,.. lilli' l It . apl'['I),[('III','
tIle ('II]'\'C' ,lltci be('(JIlIl'~ tallg"'lIt III II WIIl'II I I) gilt

whe-n t cc.O, It -'0 'f); hcnr:«, thc: lilll: /)(' is all a~ylll]>loU:
of the curve.

1!I(j. The arc: which lllca",Jrc'~ 11,,: :tllgillar )llotlOIl of the

1'a<1III';-1'1:('1.I,1' has IWI'1I (;SIIIlI;II,'d f['OIII t)[(: rigili. I(J III" Icrt,

an.] tIll: v.tlur: of t l'('~ardl'd as jlllsillll:. II II',: revolve

the r:lllillS-I'I'c:!or ill a ('ollirary d""Ttioll, tIll: 11icaslIrllig

arc will Ill: estimated fr I) II1 J.:J't, tl) right, tIll: SlgII I)f twill
be challg-('d to 1I(:g'ativc alld a "illlilar ~pir,d will 1)(: (k-

scribed. Tlte lin« 1)CI is all asyml't()IC 10 the hyperbolic

spiral, corresponding to the lIl:gali vc value of t.
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197. Let II~ IIOW lilld a gl~lu~ral value Ln' tlt(~ sllhtallgclll

of the spirals. '1'1,,, su/'/lIlI.!.!""d is 11/1: 1)J"(!J"ui{J/I of" 11/1;

/un!!;c:1I '!II. il l uu: dl'l/l(:" I/!/"I)//..!.',It t lu: to/I: iuu! j)l:I"j!I'lIdu:Il/II'

to t.h.« ','/J,(/ilis-/JI'('loJ" /,",1',\/ II.!!, 111I'()ugh I [u: Iwilll (!/ c.o nt ru},

TIII~ c'lllall()11 (Ii' t1u; sl'lral" Iliay I>e wriuon 1llldl:r UII:

[Ol"llJ

/I - /0'(1),

ill which WI: IIllly SIIj'POSI: I 1,111:ind"III'lldcllt variahll:,allii

ih lirs1. dil]""rt:IIII:,j ('OII~t:IIIL

1.':1 :1 () I I", 1.111' 1111111;; or
IiII' 111:':"'II:ill:'>'/'11'1,1", I"/';t 1<111-

!!,"lltllJ IIII' 'PIi':Ji ll1. Ihl: poillt l ',
and /1 T dr.rwu PI'I'I'I:llriit:lllar to

till: I'adills-v(:clor ;\ I>, 1.1,,; slIh-

1;111 'l,I' 111.

'1';11;1: ;111\ ot lur pllll:t or the

spiral as I", all.! draw AI".
'I'hrtlll!2,h A draw ,1 '/" l'crp"ll-

.liculur to /1/"; draw Ih" secalit

'/"1'1", :\111>111 till' (',('.1111'1: A
d",;('J'il,,: Ih" alT I)(~, au.] draw

tlli' chord I'(l.
10'1'0111 111\1 sllllilar lriallglcs QVI",;I '['IJ", WI! have

'I'

I) Q : (.J 1'/ :: ;I '/" : A 1)/ ;

hence,
QPI ;II"
J'(J '. XI'"

But when WI~ ]las:; t() 11I1! limit, by supposillg t.h« point

pi to coincide with I', the secant 'I" I' /'1 will IWClJlllP the
tangent }''1', alit! A '}1' will lW(:()Jlle till: sllhtallgl!lIl. A'/,.

](i

't:
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But under fhi·, ~1li'1'()"ltl()11

the; arc N;V wil! III:(;IJIII" ("1'1;11

to til, the arc l'(.l to 111e: ('IIIJI<I

l'Q (Art. I~,"q,AI" to II, ;'11<1

the 1111(; (JF' to il u .
To lilld Ilw v.ilur: "r II" ;11"('

l'Q, we huvc

1 : NNI ..• 11' al(' J'(l ;

lienee,

dt :: u. : arc I'(l,

all!! l'(l- udt,

Suhstitutiug l!t(;~.~values, and passing to the linut, WI:

have
!lit. 'II

1/111- ~1T'

hence, we have the "llh1.all~cnt

19Fi. ff we find the value ()fl.l~ and du from the gCIl-

eral equation of the ~piral~

U :c-:: at",

we shall have

AT:= !!"'tn+1•
n
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In the spiral of ArchimcJc;,i, we have

n=l, and

hClICC,

If now we mul«: I ~ 7r= circumference of the mea-

A 'I' ~_:_:~7C cirClllllfclTllce of measuring circle.

After 111 r('.voliltioll';, w(" ,;lIall have

and cOllse'lllclll\y,

tlI;li IS, IIII' 81(/11111/:',1'111, u(ll'/' Iii /'1'I'(}/II/liliIS, IS "'l/iii/ 10

III times IIw cin:llmji:!'eIlC" (}r /1/1' cucl« .!"seril,,',/, 'willi
II,,: /'wl/l/s-{'I'I'/(}!'. This I'r"l'"rly was discovered \)y
Ardlilll("It-:;.

I~I~I.11111",hvpnlioli(' spiral u-- -I, und rhc value of
lite Sllb1;tll'~("ll \wcOtll(!S

;1'/, -a;

that is, the slt\)tangent is COllstant in the hyperbolic spiral.

200. I t may he remarked, thut

A'!' wit
A /' lIu

cxpn!sscs tlw tangent of the angle which the tangent makes
\\ ilh llu: radill:;-\,edor.
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In the Iogaritlunie spiral, or wlucl: the cqu.uiuu IH

f,_ Jog 11,

we have ill 1 !III .
I "

u

lICHee,
A T 1/1!t
A I' -_ !Ill

that is, ill the J()~arilllllllC ~I'lr;tI, IIII' ;111)2,1"11)11111'''1.\ Ilw

Ltll,).!:"111 ;111.1Ilw l'arllll~-\t'('ll)r l'a""III'~ Illrl)ll~,11 iii': 1'"ljll (If
('ont:I('I, is (:()llsl;lIi1; .ur.] III<' 1:111:',I'lll "I IIII' ;11 I' IS 1"III:ti

1" IIII' 111,,<llilll.' "III", ,.,ysll'lll of' I"~;II"IIIIIIIS. II 1,-; 1111"

j\;I])I'1I:111 I"!i;1J"I I11111"f II, III(' all).!,I" willi", 1'lllliI 1" I:, '.

~OJ. The vulu.: ()J l lu: 1.:111""1" III IIII' "IJII;!I-: I>

1''1' /.1/" .1 '"
/1 ',1/'
,I,,::

~o~. To lill" 111<:ddl'n"1I1Ial "I' lit<: arc, Ilhi,'11 IVI: II iI!
rcprt'sclll I,y ", IVI: Ila\('

1'1 J' (~, J

or, by slIhslitlllillg lor Q/J! <11111 IJ(J their values, alld

pa,;,;illg' to the lunit, we lia VI:

lI::d/~.
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20:l. The d ilfcrcnuul of the
arc a A])I' when rdcrrcd to tho
polar «o-ordiuutcs, is 1I0t all clc-
lllelitary ["celatl,!!,le as wlu.n re-

ferred to j"(·('.lall,!!,lllar ;('(''', IJiIt.

,Is

til

,\J'y/'Q
dol'01'

\\'I,ieh IS the dilJ'cn:lllial of' til(' :l1'I:a of allY SI',!!,111('111 of ;t

sl'i r.rl.

(!/ 'J'ill/qult [>Lmu.'s aiu] NOJ'JlUd {,inn' 10 8m/llus,

'II F(;I', '/' e ) ., t),

1)(' III(: ("I";lIi'"1 of' ;( sllri':!n"

If Illrllll,u;it allY poi nt Ill' 1111' Stlrra(·(~ two plalles Iw 1';1:';:';(:([

illlcrsl:Clill,!!, Ih" :mrl'acc ill two (,llrv(:,~, alld 1.11'11 slrai!.!,ht

lill"s 1", druwn r('sl'('('lil'cly 1;1I1,!!,('"1. 10 ('a('h ,,f' Ih" ('111'1'('",

;Ii 1111'ir (")lIIIII"11 p"illt, ill(: [11;1111' of' tllI'S(' 1.;III.!',(:llIs wil I 1)(:
lallg!:lI!. III IIII' :i111'1':i1'l'.

~2(\'-), 1.1'1 liS d(:sl~"llat(', IIII' (·,,-ordlll;lt('S oj' the IJilillt at

\,,'L:I']I tIle pljlllC i:-: l.u he 1;111~~'('lll II\' ,/,/1,.'/', -:.'1.
Iii'

185
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TlJr()llgh this l'"iJI1 lei " 1'1:1IJt: 1,(: I'ass"d parallel tu tli<"
cu-"nlillat<: plallt: rz, 'l'llls pl:lIl1' Ildl illlf'J'scr:L the

sruLu:« in a C1II'IT, '1'1)1' "'111"llldls to! It sll'al!_dil IIIii' tall-

gClltto t.i1ls ('111"11, ,II 111<' 1'''1111 II iJII':I~ "Il-ordlll:I1Cs arc

:..1./', yll,z'l, are

(I/f,
.t '/

( ::'
d : '

tlw lirsl "ljlla1.illll 1"'111" SI'llls IIII' j'I'II.I"dlllll IIf IIii' 1.1I1l~"'lIt

0)1 Ii)c (;11-11)'.1111:11" pllllll' Z.\", IIlld 111(: SIT()IIII it- l'I·II_j",·-

1101)) (1)1 III<: C'J-III''/111III,' 1'1:111<' r Z (:\11_ (;"11111. 11/". 1\.

AI'I, ,'(I),

'1'11)'1111'-',11II", ,;11111' IJI,ill1 J<.I 1\ ,,/:111" 1)(' 1'11';"'.1 l'IlI';,/I,'1 I()

1111' ("1-111',11111111'pllllll' Z,\", ;11111 \\1' ,slllill IIII~I' fOir li,,~

"'11/<1111111';Ill' It I:III~"III 1" lilt' "III I (:

l/' , :J' - ,/

wlu.]: 111I ],)'''./' ,,'t.!()11 "I' IIII' lil'Sl 1;11111"111 "II IIII' ""-1'1'./111111,'

I,ial)ll } Z IIIII"I'S II llil IIII' :IXi' "I Z; 111111IIII' "II"llil'l"1!1

ci.r
- ]I'],I'('SI'lll.s IIII' 1"11'1'1'111(II II,,' 1111"1, II 11I('1i IIII' /')'1'./1'('111111,j:' - ,-

(.1 ILl: "",,,1,,1 LIII!!,I'II1. "II IIII' ,,111111' z,r 11111"",: II it/I IIii'

;1X1S III' X i,\11. (;I'()III. HI" \111, 1""1" II),

Bill II" ... , "Ill IllI'lI'lll.s III;I_\, III' 11\1>11",,'<1 ill flll]('II(lIiS III'

II 0,

,f 1/
,/1/ /

'/I(/y
():
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hence, rll/
dz

dl/.
d:
(Ill •

dl;

and if we sllppose Y c()llslalll, \V{: shall lilld, ill a simiiur

luanner,

,1/1

.t, d;
d : cl« '

rI,},'

]W)]CC, t lu: cqll;I1,il)ll of 1,111:pr".I''l:ti()n of till: Iust tangent 011

tlte pLlIIc of }!/, 1)('('I'"I<:S

dil
d::

(:-:");
rill

t!y

and tl«: c<["all()11 of til" PI'().I''''tl<lll (If tlu: se(:(Jlld Llll_!!;cnl
011the pl.uu: of /. X IS

.'1-.'/'

:r - :,/1 - _

"'i
d~

(:: _-Zll).
illI
J,

Tlw /'qll<,tilJll of a I'lallc l'aSSIIl~ Ilm'II!',1t t.h. point wlios«
co-ordinales ;11'<' ..,/1, !III, .,,11 IS or 11,,: lorrn

A (.l,'-_ail) I U(!J---l/I) 1 ('(z ::;11) 0,

('
ill which will r"I'I'('SI'II1. tile lall'~"llt of 11", ;'",,!I,: whi..l.If
the lr;[('/, Oil tlw co-()r<illiaic phil" }' /, 111;11(1':'willi IIJI,

, ( : ,

axis (It /', all.! IIJ(' talwl'II1 01 II", ;rll~l, \I'IIII'I! till:,I " ,

trace "II lite [!LlIll: (If /,X 1I1;1I,l:s \\'11,11tile ;IXIS of /'.

187
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But since the tangents are respectively parallel to the
co-ordinate planes YZ, Zx, their projections will be
parallel to the traces of the tangent plane: therefore,

du
C dz
B = - du'

dy

du
C dz
A = - du'

ax

hence,

du

B-- dy c.
- du '

dz

du
dx

A=- du C.

dz

hence,

Substituting these values of B and A in the equation
of the plane, and reducing, we find

du du du t
(z - Zll) - - (x -+- x') - rI(y - y") - = 0, 4,

clz dx dy

which is the equation of a tangent plane to a surface at a
point of which the co-ordinates are x", y", Z". If we
neglect the signs of the constants A, B, C, which enter
into the equation of the plane, the equation may be written
under the form

du du du
(z - Zll) d- + (x - x') -d + (y - y")- = 0.

z x dy

206. A normal line to the surface being perpendicular
to the tangent plane at the point of contact, its equations

will be of the form

du
-', dx ( ")X-;.c; = du z-z ,

dz

du
dy

y-y= du (Z-Z").

dz
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OF THE

INTEGRAL CALCULUS.

Integration of Differential Monomials.

207. The Differential Calculus explains the method of
finding the differential of a gi vcn function. The Integral
Calculus is the reverse of this. It explains the method
of fillding the function which corresponds to a given
differential.

The rules for the differentiation of [unctions are explicit
and direct. Those [or determining the integral, or func-
tion, from the differential expression, arc less direct and
arc deduced by reversing the process by which we pass
from the function to the differential.

208. Let it be required, as a first example, to integrate
the expression.

Xmd.T.

We have found (Art. 32), that

d(xm+')= (m + l)x·ndx,

whence, dX"'+' ( X"t+1 )x'"dx=---=d __ ,
m+l m+l
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and consequently
11<+1

:r'

'lJ/.~0'
IS tltt_; function of which tl[(~ differential is x"'dx.

The illtegratioll IS llIdicated hy placillg the character J
befure the dillcrcntiul which is tu be illtegrated. Thus,
we write

J:J""il:r
,'i,1II+1

1/1,+1 '

from which we d(,dlll"(: l lu: r()II()\IIIl~ ru]«.

'l'o 1i111'~nlll: " III,IJIWIII/II/ Ii/ Ihl' Jill'ln \"'<1\, (/1I~1/l1'1i1

11,1' I',I,/)(II/I'ill 0/ 1//1' ""rlllide II.'! lli/l/,/' (/1/11 dll'II/" 1'.1/ 1/11'

LI/IIUII'lti SI! II/I'/"I'lised a ni! lu/ 1/", rll.I/iTI'lllwl 1)( I/i"

rlIOlli)/".

~()q, 'I'll" r:h:lr:lclnlsli,' .r :;ico,l,ili,'s 1111,'.',;/1// "I' .'0111/1,

'I'll'.' 'Ionl S/IIII, lIas t:1I'l""Vl:d I,y Illu~" \1 It" lir,1 11:'1'.1 IIJI'

clliJ'<'I'(:llllal .u n l illt"~.ral calcuills, alld \VII" rc!\:tl",kd II!"

illtl:gral of
,I" rI I'

as til<' S/III! of all Ih" I'r,,<illl'h w hi.l: ans" hy III1t1til'lyill~

till: I/Ilh 1'''\\'1'1' "I' ,J', fur all v;tlu"s uf ,I, bv lh" ('011-

st.aut ,{,I',

d.,'
:!IO. Let it h(;'rc(I"lred to itlkgrate the expression

We llano, frolll thl: last ruk-,

/ "
I' :1+1

J~'I!' _= /11,1',/'-"'-
:1' ·-:1 \- I

,I'-!.!

In a similar manner, we lind

2 6 6
3 :t " ,TJ +1 Xl :J:r:l-

fdx V:I: =J :L"a:1' = -- = - = '_-'-.2 5 5
'3+1 3
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~ll. It lias hcclI shown (Art. :!.~),1.1r:11. the t1iJI"nclItial
uf Ilw prqdll('l, o l a v:lriahl" 1IllliliplH'd I)'y a cowiLIlII, is

(~lj'l;d 1.0 lire ('ollsl:lIIl, 1I11i1lipll<'d hy lil" ddf"ITIIIJ;d or tile

v:lri:ti,I,·. 11('111'1',WI' nra v Cl!Ij('llldl~ 111,,1,11/1'//lII'!!,'r/l! (It
t lu, 1""'//1(/ (f 1/ di//;:n:llli,tl(u/ It (1I!I.\(I/III, IS ('I/(/(t! II) t.h«

(Oils/III/I IIII/III/d/l·.! ('// t hr illll',!!,J'a! 'I tl«: dij/i"l"clilw/:
liiai. TS,

:i,III-I-t

II ~-
1111 I

1/I ;r'" I!,t'

J ICII('I', 1/ IIII' ('.1'/"'1'.\'.1'/'1/1. II) ()(' illl'·,:.!,flll,''/ Irlln,' one or

111111'"(1II/S!OIl! j;rl'/lIJ's, 1//1'.'/ /1/1/.'/ I", j)/IICl'd (IS ./i/(:/IIj's unth»

""! iii,' '\i~/1 "j'lhl: tn.t« 'P,fIil,

~I:~. IL 11:ls aLi!) h("~11sl)(lwil (Art. :!~),Ilia! <,very con-

';:!Jli Ijll:llilily ('IJIIIII:j·tt-d with 11w V:trI:dJil: lrv lire Sigil

l,IIIS IJr Illillll.', wil] di,'i:I]'lwar Til till' dilfcr('1111:i1II)II; .uu]

111:1,,'1:,tlw diili:n;lItial of 111- :/", IS lire S:UIW "S tli,,1, of

:I viz , ·/II./,"·-'d,·v. COIISI~'1I1(:lIl.jy, till: :-;:1111(; dill'IT':lIl.ial

III:tV :111.'i\\"'1' to sl~v('ral illtj~g-ra[ fllliCliollS dilT'''.l'ill,!.'; Irrun
(,:lI'il IJllwr ill till' V;tiIIC of the ('ollsl:L111 1."1'111.

III i):ISSIII~!" 111<'1'<'1'''1'1',lrom tlll~ ddli'I'l'IIII:rilo 111(~11111~.!!;ral

or flllll'lioll, WI' 1I111SI,.uuu.x II) tll'~ IiI'S! Illh',gr,rI ol)lalllcd,

a C')II~I,lllt 1<'1'111,:11111 t.lu.n lilld I'IIC!t :1. v,dlll'- rill' tillS term

as will j·h:lr:)('!r'.rizc the particular illtcg:ral sOllgltt.

Fur exalllpic CArL. !)'1),

or

18 the difrerential eqllation of every str:tiglr1. lille which
makes with the axis of ahscissas all <tllgk whose tang('lIt
is a. lutegratillg this expressioll, We have

Ell
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I dlj (lI,f,t',
or y _ (/J',

or finally, y (1.1; + C.

If !lOW, the required I",c is tl) pass through the orrsnn

of co-onlillalt's, WI~ sllall h;I\T, for

y - 0, L' O.

But if 11. he reqllired lhal till: 1,111' ~\i:J!1 Ild.l'\'scc1. 1111: axis

of Y at a distance from III" on!.'111 (''lilal 10 I- I), \'.'1' sb:tll

have, for

.c ,- 0, y= +/), :Lilt! CI)IlS('I[III:lltly, C.-- II!;

and the true integral will Ill:

y III.' I I,.

If, Oil the cOlltrary, it wrr« J'I:'lllir",J that til<: ri.ilht line
~11<)l1ld IIIt.l'l'SI:Ct. t lu: aXIS of ordlllat.<:s \)I'lo\V ti)<: orlgill, \VI'

shollld have, for

:r =,~0, _II -- - I!, :LII,i COIISI:'[lIClitly, C: 0= - I!;

and the true integra] wOllld 1)(:

_II :0= (/.1: - I).

:l'r/,J' + IIrI/! 0

is the differential equation of 1he circumference of a circle.

By taking the integral, WI: have,

f ial« + fydy "0, or :£2 + y2 =0,

or finally, a?+ y2+C=O.
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If it h<~rCljlllrt:d ih.u Lllis integral shall 1'<:1'1'(,.:,(11\1. a V;IVCII

eircllIlIi'n<'IIC(:, uf wlnrh ih« r:i(IIII.~ IS U, we shall hav«,

hy lIlakil";'

.:I: 0, .'I"" -c 1'2I. ,

and 1](:1]1'(', c: It' ;

i II' I{, 0, :J". y /'"ur I,

II It i..h IS anlw\cd to t.l«: Ii rsL illtegralThc "1)11~t.:1I11.(',

thut 1,'-1 ,,111:ii:lI·d, IS

~1j('iJ a r:dlll' I:' 1.:1

(':ill.'<I all i/!'/!I/!'i/J'lj CU1/.\ .anl., hccallC'(;

h" a1.1.rillllkd 10 it as will caIIS" 111<1

1'("IIIIJ'I'd 1111"!!:al I() i'lIllil givcll condiliolls, which mu v he

illlj'I)","1 Oil II al i'1,'aslln:,

'1'111: r:dlll: of 11)(' ,'OIISl:lIil, 1I111S1 1)(1SllI'iJ, as 10 rtndrr

1/", I'IIIIII//{Ill /1/11' jU! ('/'/'({/ ual t«: '/"///1)/ /,(/,/I, I,,: IIUn/III/1'I1

iii ///1' I:uol/li//,s,

:21,1. TJll1nl is OIIC""SII to whir-l: the form ilia of Ar1. ~OM
.jOI'S not ;lpl'ly, 11. is tluu ill which m.

';llpposilioJl,

:i,1II + I .'/: -1+1
::iPJ '" I {.J' •;l,' u;»

1/1. -\-- I .--- I + I () 0

J ;r:- •r/;r' c= /I!:..r
< a:'

alld t:-- log:r' + C'. (Art. :>7).
• :I:

21:>. Sillce the dilr(:n'lil.ial of a function COBlpos(ld 01
several terms, is ("pial 10 l lu: SIIIlI or dilf,:nlilcli of LIlli dilre-
rcntials (An, ~7), it follows 1111111hc illl(~gL'il1 of a ditlcrcn.

17

I !J3
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tial expression, cUIllI',,~,',1 ,.f ~"I"'I';.1 "'rIIl-;, i" C'I";t! to the

suiu or diJl'c'rClln; "f 1111; 1111.'!!r;,[~ Llk(,ll ~"i';lI'al('ly, Fur

cx.uupl., if
1"1.,, , --

I," V ,",(,1',
.e:

alit!
,I

Ii ,::::I/,/'-I- ~ ,(

I

(II -I- 10; I ("t": ,- &c,)"r/;r,

III which II i-. a l',,-;ilil" alld 111101.: 11111111)('1'. 1I1;IV II(' IIlt"-

grat,;,i hy till: rid" f()r 1I11111()1111;.l,-;, Ily lil"t r;lI-;III,~ till' 1'''''-
noruiul I" the p"I,...r ill,[lCal"d hy Iii" 1'\1'''111'111, alld 11i,'11

Illidtiplyilll.'; each 11'1'111 hy rI""
If, 1">1' ,'\allll'l,', W" 11I;lk" II

tenus, \VI' Ii:! \'('

1/','::'/'/' ),

that j,;,ill 1/.'11/(/1 1111' ('.Ii"'III'/I/ (IF Iftcl'lIJ'll/ldl' u.itliout 11/1:

parelltlwsis is If'SS 1'.'/ {(lIilll 1111/11tlu: 1',/'/JlJlI/'It! If l/tf oari-

able within, we lila y wake
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a+ bxn= z, which gives

dzxn-lda;--.
-nb'or

d mdz
U =z nb'

and consequently

whence or

(a + bxn)mtl
u= ·+C.

(m + l)nb

Hence, the integral of the above form, is equal to the bina-
mial factor with its exponent augmented by unity, divided
by the exponent so increased, into the exponent of the vari-
able within the parenthesis into the coefficient of the
variable.

For example,

l(a + 3x2/ xdx = (~~~;)4 + C; and

1. m .!!.
[i« + b:X?)~ uucdo: = 3b(a + brJ?)~+ C.

21 . A transformation similar to that of the last article
will enable us to integrate certain differentials correspond-
ing to logarithmic functions. If we have an expression of
the form

make c+bx=z,

du = ada;
c+bx'

dz
which gives dx =b' and by sub-

stituting, we have

f ada; - jadz - afdz a 1 + C-- ---- --- ogzc+bx- bz b z-b '

195
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and by substituting for z its value

i tII/.}.'

, C 1- 11.1'
1/
- 111"(1' + 1,:1:) -I C.I, r-,

III a similar ruanucr, w« shOldd Iilid

j' (/(1,1: _ CC, _

c: lu'
(f 10" ( III, r-,

1),/,) I- C',

ill which the illk!!,ral IS 1J('~:tII\(', ~III(''''((''') rI,/"
\V(! call lilld, III a C'lIl1llar 111:t1111l'1,II", il'II'.~I';r1 "I' 1'\1'1\'

fr,[('lioll of whici: t h« 1II1111/TUlo/' IS I"/I/(/II() t lr« rll//II'I'I1I11i1

ofth" Ilel/Olllillll/O/', II)' "'/11111 to thai dl//i'/I'/Itillllllllllll'lll'{

(''! U CUIIS/UIl/,

H, (or cxuuiph-, wc JI;(\I:

(I, :!I.I') 1/11/.1' ,

(/ t /1./. I t.r: '
dll

make a + b» -I- 0,2
and lienee,

1\!tW!t !.'I\('~, 1,,/1'" ~I",.dl.' - _ d z ,

du or II IIlJ(),!.!;Z,z
and by suhstitutiuu for zits vulu«

Of Different/ats u-liosc III/f'ljmls arc erprcsscd by
lite Circular Fllncliolls,

21!.l, We have seen, Art. 71, that if a: designates an arc
and u the sine, to the radius 1lllily, we shall have

till
d:1) =.:.: -:-Jl- ~2
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hence,

or adoptillg the notation of Art.. 72,

[ till. sin--'u + C'.
• V I - II"

If the ,liT ('Xl>l"(:ss"d III III(: sC(:()llIl member of the cljlla-

ti'JlI h(~ cslilJIall:lI Ir()111Ilw Iwgilillilig of (h,: first quadrant,

the SIlIlO will hI: 0, lViIen tiIe a rr: is 0, and we shall have,

for /I ()

J
. "II

• VI
- -= 0,

II?'
(,'=0,

and utulcr this slipposition, the eillin: illl.l:gral IS

/
. till

" VI II

'I'll give all "x,lIIll'l", siIowillg till: lISI: of lhl: arhitrary
l'III1:-3I;L111,let liS SIIPI'()SI: that the arc which is 1.0 bc ex-

,'I"':-3:-3"d II_\' Ihl: SI'I'Olld IlII'IIJiwr or lhl: {:'1l1alioll, is to he

(':-311111;11",[1'1'0111 1111:Iwgllillillg of till' secolld quadrant. This
SlIl'PlJsll.it)1I will I'ellder

Ivt-~,) 0 for 1l= 1.

Btl u 1 sin--'Il -_ I . hence,u w ten =,. , __~?r ,

2_,.. +- C = 0,
2

or

and we have, for the entire integral, under this supposition,

J" dll - -I J-\li:::u2=SIII 1l-"2?r.
17 to
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220. It frequent! y iJal'pclls that we have expressions to

integrate uf the Ioun
dz

Vil:'-, Z

Let 1[S SIlI'I'()~(', for a 11l1J111Cltl, lhat a is the radius of a

circle, <l1J,! z tlte Silll' of allY a rr: III' tlt(: circle; ami tit at u

is the siu« of all arc clJltlallllnl.!, all c(lllal 1I11111!>cr of dc.gre(·,'
ill a circle whose radius IS unit v: \\': "hall til"11 huvc,

Ii :: /I . '''',

hence,
zu ---
a

alld
liz

dll ---
It

<llld COIISC(lw:1l1Iy,

• tl :

I V,/, - z-;"

hence, [; il n.
VI - II"

Sill
Ii

the arc being st.ill tal«.n III a (,lrel" whose r.u li us is IIlIIly,

221, We huvc seen (Art. 71), tlla1 if :/' dcsIl.!,'lIa1<'s all

arc, alld u. the COSilll', to tit., r.uliu-, u n itv , we shui l huvo

.III

hence, /
,!II

V]- ~-'l'
,'I' \ (.';

or adopting the notation of A 1'1. 7~~,

/
till__cos-luI-C.

VI-IlL
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][ the arc lit: l'slilllatcd Irum Liw l)("gillllillg of the first

qlladr:lIl1, it \vlil be CI[II;[I to J.". for u. _u; hence, the
~ I

-?r when
2

lir.,l 1I11'1It\)(T "I" die (:'111;[1.11111 hCCIlJlICS c([lIal to
I

'/I O. Bill IIlIder [Ilis SIIIIII()sitl()lI,C(l::;~I1l:'__. -?r:
::2

hence,

~~~. By a IIll'lil"d :lllalog()IIS tu lklt of Art. 220, we

,1111111<1 Jilld

~I .zcos

~!:.!:I. w. h.rv« SITII (A.rL 71), t.l1:11 If ,I' replt'SI'llts an
art', :lIId It its t:lIIgCllt, 1" til(, radilis u nitv, we have

fill

I I II"

hcnc«, f· till ,
--"-.~ -;1: +- c :

• [I u:

01', a<iuJ,tillg the 1I1l(;ltillll of Art. 72,

I·d."• 1 I_I/," 1allg-
lu+C.

If till' arc IS cslilll:ltcd Crolll lite ]Wgilillillg of the first

quadrant, we sliull !J:IVI'

c : 0,lienee,when
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and the entire integral is

f lilt -1_.-. -~ - tanu U.
1 t- 'U~..,

224. '1'0 integrate expressions of the form

rlz
a"+

let us suppose for a monn.nt that It is the radills of it circk,

an: I Z lite LlII).!I:II1 of allY .uc, :IIII[ tltat II, is Llu: tall,! ..!/~lll

of all arc containing all equal IIll111l)('r of degrees ill it circle

whose radius is uiutv : we shall thou have

: 'It :: II , ,

hence,
Z

U=-,
a

and du
de:
a

and consequently,

J. (/~I

1+ It"

hence, by tlivJ(ling by II,

f·-~.z_. = __l__tallo,-I"":'"
• u" t z" 11 .., a'

the arc ])(,III(l ('~tiJllatcd to the radius unitv ..

2:2;-" W« have SCl~n (Art. 71), that it' :/.' ]'q)l't~Sellt~ an

arc, alit! 11 tll'~ v(;rs(;t!-silll', to tIle r.ul ius of unity, we have

r!J,'
rill

-\7~1l --- -ui '

hence, =;r = vcr-sin-lu + C:
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and if the arc: j~ cslllllalcd Irorn 1hI: b(~gillilillg of the first

qua.irant, L' 0, alld we shall have

220. To integrate all ex pression of the form

V~(1.2 _- .)

:-;III'I'''SI', as 1)(:('(1('(', ({ 10 be the radius of a circle, ami
wr: "iJall hav" (.\11. ~2il),

'Il ~--,
a

liz
tilt = -~;

a

j' '/Z
I ..V :2«: -- .Z"

. z
__vcr-Slll-

a

to the rudius uu itv.

Integration "!I Series.

:227. Every ('\I)('(::->silJll or 1111:['orlll

s.i,

ill \Ihit'h .r is SIII'II a fllllClioll of ,J', that it call he developed

ill th" j')()\\'Crs of iJ', may 1)(: IIllcgralcd by series

Fur, let. us SIIJ>J>()SC

X 11",a l· ft.,." I (:,r' + [hil + &c., then,

u'r:"!l:/' + (",I,cdl: 1- Ih:"d:l: I &c"

f Vi A. If I ,
...1(.;1'= .._- ····:r t' + :v'+

11+1 11+1
c: J)

:I:'t'+ '-:-:1',I+I+&C •
c f 1 ill-1
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lIellce, tbl' integratioll by S(:rIes i" effected hy devdop-
illg //,C [unction IX lit the /WII;ers (1' x, lII/1,liiz"ying lite

series f)y dx, .u«! then. ill/.I'gmling lite t ernis s('1'uralely.
,f.T

Let us take, as a Erst cxtuuplc,

d.l.' I___ = da: X ---- = d:l:(a -t--:1:fl,
o f- ,I.' 1/ --t- .c

(II :ryl .r .'1:-' ,'l &c,
j- + + ,

It 1/ ((I ({I

j' d,I' == j'( __I_ rI:I' _ :1'';,1' -+- ","d,'
II +- :t' Il - ,i' 1.('

:I':I,{,I.'

(/,1
\ <'Icc.):

and illll'!,!Tatill!,; each tcrru sl~p;lratcly,III: llilLlll1

,'(:1
i &c. \- t :

'I Il'

j. .t,
II l ,/'

log(!, j- :I') (Art. :.21 t'i),

we have
:/'

log (Il -+- ,')') ==
a

/(,1 + &c. -j- c.
111'

To d('[crlllill(~ tho value of thl! coustnnt, make :1' - 0,

which !,;iv('s

log II -- () t- C, or (_,' log a; hence,

J' :1''' ,T:1 :/"
los (Il -+- x) =, log a-+- -- - -, -+- " - --- -+- &c.,

,., 'It :.2!i'" :3!{' 'la"

'(' .1' '1':.! '1,:1

lorr(I1-+-:r) -loga::::-l()!'; (1 +-'.,-) =~ _--'''_''+- ;~----c-- &c.,
'" '!l 11 :.21l" .la"

a result which agrees with tbe developmellt ill Art. 58.
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22H. Let us Like, rill' a s(Tond e'\;lIl1p~C
d:r

Tf~;;;.

w. have,
d.T'

11

. I .r"I (J,l' :/ ,/
&e. C.;J' I- I I-

I I ,I :l ;) 7

\\']WIl \VC mal«: :L' - 0, lilt: arc is (); hCIII:<',

laJl,!.!.'--- I :i..'
.'1;:1

,'t' --

;,;1
t- &c.;

7

dl.'
W(~ place :t,:! ill the

-I' ;I;::'

Jir,,1 t('l'lll Ill' Ilw hinomiul, alld t111~1l develop the binomial
u: I, we (Ill1aill

.1H + &c.) d;r ;
;t'

1111.1 hy illll'!.';ralillg, we have

_I I ,
t:lllg :r' _. -- - -+ - --·--1 &c. + C.

,'J: :~.T:! f):)_,fI

To filld 1111: value (If the constant C, let us make the
Iarc = !H)') :=- z)?r. This supposition will render the tan-

gent ;1: illiilJJw, all(l cOllsequellt.ly every term of the series
will become 0, alld the equation will gi ve

1 c-,..=O-f-·~ , c =_!_,...
2

or
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Making this Sllhstitutiull, we have, for the true integral,

j-&C.

<Ix
230. Thc two "t~ric", fOllnd [rorn the cXl'rt'SSi'HlS .;

ti" i: "."
ami .' __ , nrc, as ihcv SllOll\.! \1(', t's~<:Jltial\v til(' S:llill'.

:1'1 I J •

For, t\ll~ t:lll~"lll of all arc llililtlll\i,·d \1) ih ,·"t:lll~"llt,

IS equal to r,ldilh ,;,[lIar<: or uurt v ('i'li!!. :\rt. \VIII).
I

llellee, if wo slIhstillllt~ for :J', ill t lu: ["Irst
, we

,'I,'

shall have, for the (,Ollll'lt-lllt'llta\ art',

-I 1
tanli --

;1'

and subtracting hoth 1l1Clllhcr,; [rom

1 _I I
2 'if' - tall~ -; tant( '.1'- ___ 1f -.,

2:31. w, have fU\llld (A n. 71),

. - I J' cl.r: ., - I
Sill X =, / ---C--.-; "". (I - :1;") "r/:v;

V I-x'

and l,y developing, w« {inti

. _~_ I.,
(1_.x:2) "=1+~-";"+ ~

multiplying by d«, and integrating, we obtain,

,"
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the constant being 0 when the arc is estimated from the
beginning of the first quadrant.
If we take the arc of 30°, the sine of which is equal

to half the radius (Trig. Art. XIV), we shall have

. -1 ° _ 1 1 1 1 1 3 1 1 1 3 5 1 1 &.
sin 30 - 2+ 2' 3 .23+2' 4: .5 .26+ 2' 4: .6 .7 .27 + c. ,

hence,

_ 6 . -1300-6 (1 1.1.1 1.3.1.1 1.3.5.1.1+& ),..- sm - -+--3+---5+ 7 c.,2 2.3.2 2.4.5.2 2.4.6.7.2
and by taking the first ten terms of the series, we find

,..= 3.1415962,

which is true to the last decimal figure, which should be 5.

232. We will add a few more examples.
dx1. To integrate the expression Vx -:r!-'

By making -Vx = u, we have

dx dx 2du
V x-a?-= v'XVI-x = VI-u2•
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But

(
1 _ ..::_)~= 1_!_ xA-_ !_ .!_!!_ - ~ j!_ - &c.·

2a 22a 2 44a2 2.4.68a3
'

and consequently
.r: (1 1 1 xlI 1 .:xl[darv 2ax-.:xl= ---.----.-.--3 2 52a 2 4. 7 4a2

1 1 3 1 ~ )-2'4'6'98a~- &c. 2x.y'2CiX+ C.

If the radius of a circle be represented by a, and the
origin of co-ordinates be placed in the circumference, the
equation will be (An. Geom. Bk. III, Prop. I, Sch. :l),

y2 = 2ax -.:xl; hence y =V 2ax -.:xl,

and consequently (Art. 130)

dx v'2ax -.:xl= '!ldx

is the differential of a circular segment.
If we estimate the area [rom the origin, where x = ,

we shall have C = o. If then we make x = a, the series
will give the area of one quarter of the circle, if we make

x = 2a, of the semicircle.

3 f dx 1~ 1 .3 x5 1 . ::3 . 5x7 & C
. .J____" x---+------+ C. + .

yl+.:xl 23 2.15 2.4.67
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I

f dx 1 1.3 1.3.5 & +C4 -lx------ 6- c. .. -Ix? _ C 2.2xZ 2.4.4x4 2.4.6.6x

Inieqration of Differential Binomials.

234. Differential binomials may be represented under
the general form

p

x"'-ldx(a + bxnf,

in which, without affect.ing the generality of the expres-
sion, m and n may be regarded as entire numbers, and n
as positive.

For, if ni and n were fractional, and the binomial of
the form

1 1 l'

XSdx(a + bx'iY;i

make x = z6, that is, make the exponent of z the least
common multiple of the denominators of the exponents
of x, and we shall then have

lip l'

x9 dx(a + bx2)Y = (jZ7 dz(a + bz3)q,

in which the exponents of the variable are entire.
If n were negative, we should have,

p

xm-1dx(a + bx-n)q,

1 .
and by making x = z' we should obtain

. p

- z-m-'dz(a + bzn)"v,

the same form as before.
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Furthermore, the binomial

"x"'-l dx (a:xf+ bxnyi

may be reduced to the form

m+~-l !.x ? dx(a + bxn-')q,

by dividing the binomial within the parenthesis by x', and
pr

multiplying the factor without by xT.

235. Let us now determine the cases III which the

"binomial xn.-1dx(a + bxn)'i has an exact integral.
Make a + bxn= ZV ; we shall then have

z9-a
xn=-b-' "(a + bx~Y?= z",

m

(z9-a);;~x"'= -b-' ,,~,- ,.
and by differentiating,

hence

which will have an exact integral when m is a wholen
number (Art. 216).

Hence, every differential binomial has an exact inte-
gral, when the exponent of the variable without the paren-
thesis augmented by unity, is exactly divisible by the
exponent of the variable with-in.

Thus, for example, "the expression
l'

:x!dx(a + barF
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F by comparing it with thehas an exact integral. or,

general binomial, we find

m=6, n=2, and consequently, m-=3,n
and the transformed binomial becomes

f,
236, There is yet another case in which the binomial

p

xm-1dx(a + bx"ri has an exact integral.
If we mUltiply and divide by x", we have

I' P
xm-1dx(a + bx'r" = x"'-ldx[(ax-" + b)xnF

P 711)

= xm-1dx(ax-n + b)q a: q

m+~-l J!_
=X q dx(ax-n+b)",

No"; if }Vi! add unity to the exponent of ta without the
pa~Jn~b.lsis, and divide by - n, the quotient will be

- (~ + ~), and the expression will have an exact

integral when this quotient is a whole number (Art, 235),
Hence, every differential binomial has an exact inte-

gral, when the exponent of the variable without the pU1'en-
thesis augmented by unitY"(flus the exponent oj the paren-
thesis, is an entire numb1r,

237, The integration of differential binomials is eiTected
by resolving them into two parts, of which one at least
has a known integral.

We have seen (Art. 28) that

d(uv) = udv + vdu,
l8«O
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whence, by integrating,

'ill) =./wlu -I ./Vdll,

und, COllseqllclltly,
I{/(II; 1111 -- J /!IIIl.

Hence, if we have a ddfel'l,ntial of the [ortu Xil.c, III

which the Iuuction X llIay he decomposed into two factors
P a ill] (~, of whidl ouc of 1.11(,111,(~(L>', call he iJltegrated,
we ~h;tll have, by making I (~rl,l.' ,,__c.u awl l ' -- II,

I ]'Qd:l' '= ]'l! - I or/j',

in which it is only I""'1llirc(ito integrale the term Im1J).

2:kl. To ahridge the resltlts, ict ILS write l' for 1~_, illIf

which case l' will represent a fractioll, alld till' ditrercnlial

binomial w ill take the Iorru

x"'-' tl:r(a -+-liJ")".

If 110\\', we 1lI11ltiply by tlu: two factors :L,n allli :L'-", the

value will not he affect',,,, alld WI' ohtain

Now, the factor :rn-1d:c(a + Iix")" is integrahle, whatever
he tlw vallie of l' (Art. 217); ;.illd representing this factor

hy (/':, we have

and, conscquently,
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But, f:1.,m-"-'i/:r(a + /Mf')"+1 =
f U",,-,,-I d.a: (a + /;:1''')1'((/ -I' lJx") =

af u/"-n-I dU"(ll + ",1:")" +- hI ;(,'",-.1 (la,'(ll + /):J''') l' ; ..1
substitlltlllg' this last value in the precedillg c(l'l<ltioIl, ana
collectillg the terms cOlltaillillg the jlll.l~gral

we have

whence,

Ioriuul« (A.) f ;;:,,,-1 r/:v( If +- /):1.''')"

:1''''-''( 1/ + "1")1'+ 1_ 1/ (III_-_~!!l_.f :l''''-:~_Id:l'(1f_~t!I,~0:_
/1(/1/1 + 1/1.)

Thi" formula rcd'lces tlw differential binomiu!

and by a similar pr()cess we should Iiud

and consequelltly, each pr(le(~HS dimillisllcs the exponent

of the variable w ithout the parcuthcsi» by the exponent
of the variable within.

After the second illtegratioll, tlI" fador nt --_ II, of t.he

second t<:rlll, will lJl~('()lllC ni - 211; ,lil(l ann the third,

m - 3f/, &c. If 1/1, is ;1 multiple oj' II, tlJ(! factor tn - 11,

m - '21l, m - :lll, Ne., will filially bcc()lIW ('qllal to 0, and

then the differential into which it is llllillijllicd will dis:tp_

J
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pear, and the given differential will have an exact integral,
which corresponds with the result of Art. 235.

239. Let us now determine a formula for diminishing
the exponent of the parenthesis.

We have

j x"'-'dx(a + bx"Y =J x"'-'dx(a + bx")P-'(a + bx") =
af x"'-'dx(a + bX")"-' + bJ x",·t-n-'dx(a + bxny-'.

Applying formula (A) to the second term, by placing
m + n for m, and P - 1 for p, we have

f xm+n-'dx(a + bX"),,-' =

x"'(a + bx")" - amI .1' .. -1 dx(a + bX')"-'
b(pn + m)

Substituting this value in the last equation, we have

formula (B) J x"'~ldx(a + bx"y =
x"'(a + bx") "+pnaJ x"'-'dx(a + bX")P-'

pn+m '

which diminishes the exponent of the parenthesis by unity
for each integration.

24.0. By means of formulas (A) and (B), we reduce

J x",-Idx(a + bx"y to J x ..-rn-1dx(a + bx"Y-';

rn being the greatest multiple of n which can be taken
from m. - 1, and s the greatest whole number which can
be subtracted from P: .

5

For example, J x7dx(a + br)2 is reduced, by formula

(A), to
5 5

J x4dx(a + ba?Y-ii, and then to f xdx(a + ba?)'i:

•



213

5

and by formula (B) ] dx(a + b:J?fi, reduces to
a 1

I xdx(a + bx3)"r, and finally to !xdx(a + bx3Y'i·
241. It is evident that formulas (A) and (B) will only

diminish the exponents m - 1 and p, when m and pare
positive. We will now determine two formulas for dimin-
islllng these expopents when they are negative.

We find from formula (A)
!x",-n-1dx(a + bxn)"=

xm-n(a + bXn)P+'- b(m + np)!rr.m-'dx(a + bx")".
a(m-n) ,

and placing for m, - m + n, we have

formula (C) ]x-m-1dx(a+ bxn)"=
x-mea + bXn),,+l+ bem - n - np)J x-m+n-1dx(a + bxn)P

l

-am

in which formula, it should be remembered that the nega-
tive sign has been attributed to the exponent m.

242. To find the formula for diminishing the exponent
of the parenthesis when it is negative.

We find, from formula (B),
] X",-I dx(a + bx"Y-1 =

x"'(a + bx")" - (m + rip)] xm-1dx(a + bxn)",
pna

writing for p, - p + 1, we have

formula (D) .,J xm-1dx(a + bxn)-P =
x"'(a + bxntl'+l_ (m + n - np)J xm-1dx(a + bxntl'+l

(p - l)na
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This formula does not apply to the case in which P = 1.
Under this supposition, the second member becomes infi-
nite, and the differential becomes that of a transcendental

function.
243. It is sometimes convenient to leave the variable in

both terms of the binomial. We shall therefore determine
a particular formula for integrating the binomial

_~ :rfldx
xQ(2ax-a?) 2dx= .f -:v 2ax-x2

This binomial may be placed under the form
I 1

J xq-![ dx(2a - x) -",

and if we apply formula (A), after making
.~~~

1 1m = q +2' n = 1, P = - 2' a = 2a, b = - 1,

we shall have I 1

J xq
-2 dx(2a- X)-2 =

1 1q-"2(2 )2 2 ( I) 3 '_x ;-x + a q;2 JxQ-?:dx(2a-x)-2;

and if we observe that
q_~ 40i q_! q-l-~

x 2 =:rJ1x 2, X 2 = X X 2,

~
and pass the fraction'al powers of x within the parentheses,

we shall have

f xqdx
formula (E) . . . . . . . . . . . . . . . . . .f==~y2ax-x2

xQ-
'
v2ax-x2 (2q-1)aj X

q
-
1dx

- + --=-q q V2ax-x2'

-I



INTF.(;IlAL CALC(JLU~~. Q15

which dilllilli~It('s the ('\1)011<'111(If the variable without the
l'al'CIIt.II,,~is II)' uuitv, If 't IS a I((hilil" al"l «ui irc J111Hl-

lxr, \IT ~It,dl lr.ivc, aflel' 'I il'II'gl'all""s (Art. :!:!(i),

• d,,'I .I.) t, ,"" V ",,,1,(, --- (~

. vn-sill-'~
1/

{I/!I't/mtio/! oj' liational Fractions.

:!ll. Evn\' ratiollal fl';[('li(l11 JlI;IY 1)(,;written 1I1J(lcr the

1'''1'111

I) ,(," I I (.l :I,'" ..·e

1 )/,:" 1--(t:l,n -,

.. + N ,I' I ,...,'I
-~ I)' "l.1.',.• 1- • ,I' 1 ,...,

III whi,.h III(~ ('\I'()llelil of tile Iliglws1. pow(:r of rh« v.ura-

I,!I' III 1111:1I11111I'1':J101',is I"ss "y 1IIIIIy lilall ill IIJ(~d('II{)Jlli-

1,'11,,1', 1""1', if Illr:gl','alt'sl ('\1""1('111 ill IIII' numcr.itor was

("III'.! Itl "r "\(Tl,,Jed IIII' gJ'{"L1('sl ('\I)(IIiCIII III the dCIIOllli-

I, :','r, till, di vi siou llllu;ht I", in.ul«, givin!'; one or more

('1,111'"!"rlll~ for a (1'111111,lItalld a 1,(,lIl:lillder, ill which the

1'\1",111'111of til" "';"llllg' 1('lkr wouh l 1)(( I""" hy at least

uuit v, 111"il IIII' ('\l'llliCIJ! "I' till' "'atlill,~! Idll'J' ill lilt: divisor.

'I'IJII 1'IJ1ir,~ II,rlll" ('J)\I1d t.11I'1i hI: Illtl'gral(,d, aud there

wIlIil" r('lliaili the Iraction Hilder t.1J(~nhov« form.

1'1;[1'1' III,: dl'illtlllillator (If 1.1", fl'acli()1l ("jllal 10 o . that

is, 1111,1,1'

1"u" 1- (l:I'" I

a III I let u-. al"o slIl'l)JISJ' thaI we have fOlllJd the 71 binomial

factors into wltidl it III:I\, IlII J'I's,>ivl'd (Alg. Art. :!ti'l).

'fhCH: helors will 1)(, or 1IIl' forlll :I' -- II, :1-' - b, :1: - c,

x' - <1, &c. Now th()['e al'l~ t.hrce case" :
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Lst. When the roots of the equation are real and

unequal.
2d. When they are real and equal.
3d. When there are imaginary factors.
We will consider these cases in succession.

1st. When t~e roots are real and unequal.
adx

245. Let us take, as a first example, -;J -d/
By decomposing the denominator into its factors, we

have
adx adx

aJ _ -;j= (x - a)(x+ a)'

and we may make
adx = (__!_ +~) dx

(x_a)(x+a) x-a x+a '

in which A and B are constants, whose values are yet to
be determined. In order to determine these constants,
let us reduce the terms of the second member of the
equation to a common denominator; we shall then have

adx _ (Ax + Aa + Bx - Ba)dx
(x_a)(x-a) - (x-a)(x+a)

In comparing the two members of the equation, we find

a= Ax + Aa + Bx - Ba;

or, by arranging with reference to x,

But, since this equation is true for all values of e, the

(A+ B)x+ (A - B _l)a=O.
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c efficients must be separately equal to ° (Alg. Art. 208) :
hence

A + B ='0, and (A - B -l)a = 0,

which gives
1A=-,
2

1
B=--,

2

Substituting these values for A and B, we obtain

adx ~dx ~dx---=-----j
af - a2 x - a x + a

and integrating, we find (Art. 218)

f adx 1 1af _ a2= 2" log (x - a) - 2"log(x + a) + C,

and, consequently,
1

f _2.adx2 = 21log ex - a) + C = log ex -=!!:)2 + C.
x--a x+a x+a

a3 + bx2
246. Let us take, as a second example, 2 ~dx.ax-
The factors of the denominator are x and a2 - al j but

hence, the given fraction becomes

as+ bal d
x(a-x)(a+x) x.

Let us now make
I

a3+ bal .A + B C \ !
x(a -x)(a+ x) =: a-x + a+x' I

19
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reducing the terms of the sC('(1I1([ IIlcmlwf to a commo!!

dcnominatur, w c hart.:

C=-I~~
2 '

and substitllting thesc value,.;, we oh\ain

and intcCJ:rating (A rt. ~ 1H),

11.+ l,=aloffJ'---- _loO(II--:l.'·)(II+"·) i-e'~ 2~· -

I
II -\ /) 1 (-' -, ('== a OL..'.'a~_ 00' II"' _- J,"') -t~ _/:2 ')

247. Let U~ take, for a third cxalllpl(~,

.)./' ~).).--. I
'. . (.X·.

:1;" - f.i:t' + tl
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HeHolving the denominator into the two binomial factors
(Alg. Art. 142), (:c - 2), (x - 4), we have

!l;c -- 5 A 11___________ + _,____hence
a?-(jX·+t:i :c-2 x-4'

:Lr - [) A:1: - 4 A + Rx - '2 B
r_6 a: + i-l _' a:~~ 6 a: + tl

ami hy comparillg the cocflicicnts of x, we have

-5= -4A-2B, !3=A+B,

which gives
1A---- 2'

alld substituting these values, we have

J" !_l:r: - f) t. ' - I f ilv 7 r 1':1: C
:r~'-; ti:L' t -;(:L - 2-. :c:'__-i + -2'. ;;::__4+

7 1= --log(:r - 4) - --lorr(x - 2)+ c.~ '. 2 b

:H8. Let 11:-; take, as a last example,

:1'I1:v
-;"~+1a,1;- Ii'

Resolving the equation

.71+ 4 ua: - b2 = 0,

we find

.71= -2a- ~2+ll,

alld cO]lseq1lently, for the product of the factors,
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To simplify the work, represent the roots by - J( and

_ L, and the factor.; will then be

ELE~!ENTS OF Til!::

x+K, x+ L,

and we shdl have
x A B_~=~+ __-' hence

a!- + 4 ax _ I)" .c + K :J~'+ L .

.r A:l:+AL+Jh,+nK
~--~ == -----------------
a!- + 4ax _I)" a!- + 'lax -Ii '

whence,
AL+BK=O, A + B = 1,

and, consequently,

K
A=--'K-I,

hence,

J
. xr/,r, K 1 ( J r) t. 1 ( I) C---;--~------:-=~"~_ og x+ ~ -~ og x+ ,+ .
:1,2+4(1,'t,-I)" X-I, l~-L

2,19, 1n gcncral, to iutegrate a ratiulial fracti()u of the

form
[>:1:'''-' + Q :1''''-" ••.• + H :1' + S__ ~-------- --dx.
x" + (lJ,m-' .... + j{':r +- S'

1st. J-{es
o
!ve the fraction into III l!lJrt-i()I fractions, of

winch the ntl1ncl"ators shall lit; constants, and tht: tkrwmi-
nul,oJ'S ju.:io(s (if the dCIiOf/tinal()'1" of tht! given fraction.
z,t Find tile values (if tI/I; numerators rif the partial

jructiuns, ({/til multiply each by dx.
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3d. Integrate eachpartial fraction separately,and;tM
sum of the integrals thus found will be the illtegro~
sought.

250. The method which has just been explained, will
require some modification "nen any of the roots of the
denominator arc equal to e4h other. When the roots are
unequal, the fraction may be placed under the form

Px4 +Q:il+R'a?.:f Sx +T
(x-a) (x-b) (x-c) (x-d) (x-e)
ABC D E=__ +__ +--+--+--i

x-a x-b x-c x-d x-e

if several of these roots are equal, as for example,
f.l = b = c, the last equation will become

Px4 +Qx?+&c. A + B +C D E
(x _ a?":"'(-x":'-~d~)--(x---e-)= -x-_-a,- + x---d - X---6'

in which A + B + C may be represented by a single con-

stant A'.
N ow, in reducing the second member of the equation to

a. common denominator with the first, and comparing the
coefficients of the like powers of x, we shall have five
equations of condition between three arbitrary constants,
4', D, and E: hence, these equations will be incompati-
ble with each other (Alg. Art. 103).

If, however, instead of adding the three partial fractions

A B
x-b'

C
x=c'-,x-a

which have the same denominator, we go through J;h~
19'J\'
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process of reducing them to one, their sum may be placed

under the form
A' -I n':1: + (;':r2

-- (:r=~lT--

or, hy omitting the accents,
A+- B:l: + cx?
---(X-=--a)-:l -

:r-a = z , alld consequent1y, x = Z + a;

we shall then have
A + lh: + ex" A + Ha + Ca2 + Hz + 2('u

Z + C:z?~=-;;--f--- = ---------Z-l------ ---

A + Eo + C{/2 H + 2CII C= ----. __\_----c,·· + - ;z- Z

suhstituting for z i\.~ value, and reprc:;enting the ]llllnera-

tors by singk COllstants, we have

A + Jh' +- (;.1,2 A' H' (:1_- - - -- --- + -- - +--- _- .
(.t' _ II)\ - (x - uy (:1: - af :1: .- a '

the form under which the fraction may he written.
Since the same reasoning will apply to the case rn

which there are ni c(lllal factors, we conclude that
r«:: + (1:1:',,_2 .... + R» + S--------~--~.~-- =(x-at

A A' A" Ail .. I

---:-:::+ ----- +-----.- .... -\-----.
(x _ a)''' (:1:_ 11)'''-' (:c -(1)"'-~ :1>- a

252. In order, tl,crefore, to integrate the fraction

P:/,'\- Q' :r::l -\- Scc.__ --- __ ------ d.x
(,1' - rt)' (:r: -- d) V - c) ,
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place it equal to
JI !I' JlI! 1J j,;--- +---- -1---- +-- -- + ----.

(.1.'_11)" (,l:--u)'" a:- a :I:--(L x-e'

then, rc.dllc.ing- to a couuuon (]c I lOJrI inator, ami comparing

the cocllicic.nl:-i or 1he Iiko powers of :I', we lind the values

of the numerators of tlio partial fractiolls. Multiplying
each by .l.c, and tlte given fraction lIlay he written under

the Ioriu

A JI' /I" f) - J.:
--------d:I_,+- --(h:+~--dd:-I -- ---d:r+--d:L'.
(:1'_11)' (d'--(/)~ (,v-a) J,,-d IJ:-e

The lirst two fractiolls Illay he intcgralctl hy the method

of Art. :.;! [7, ami the three last by logarithms. Hence, finally,

j'J>:x:1 + (J:r" + R:r2 + 8:1' +- 'J' ,1 JI'
---(,1' _ a)I(:J:'--=~/) (:r ~-;.)-(h: ,= -- 2(:1: - (lY-- X ~--;;

+ A'! log(J': - a) + j)]og(:1' --- d) + I': 10g(J': - e) + C.

2!i:3. Let it be required to illtegrate the fraction

211x
----dx.
(x +- uf

We have
2 (/:r /I A'-------+--_.

(X'+ll?-(:J'+llY x'+a'

reducing the fractions of the second member to a common

denominator, and comparing the cooflicionts of a: in the

two members, we have

2a =A' and A + A'a = ():

hence,
A = - 2a2, and A' = 2a ;
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and, consequently,

2axdx 2a2d:c 2adx--=-----+--'(x+a)~ (:.t'+a)~ (x+a)'

hence, (Arts. 217 & 218),

j' 2a:rd:r 2a2--;--"=~+ 2alog(x+ a).
(r + a) :1. + a

254. Let us find the integral of

By placing the denomina1or C(lllal to 0, we see that, 11y
making x = a, the terms will destroy each other: hencc, It

is a root of the C(luatioJl, anel x -a a factor. Dividing by
x _ a, the quotient is x~- a": hcnce, the fraction may be

placed under the form
a,'!d:1: :x,Zrlx

(:2 _ a'") (x _ a) = ex + a)(x - a)(x - a)
:1.;ldx

= (-x-_-a-)-Z(x + a) .

Let us now make
:xl- A A' H---- - ,_____"+_- + --

(x_a)2(.c+a)-(x-a? (:c-a) x+
a
'

Reducing the terms of the second member to a common

dClIomillatof, W(~ ha vc

and devcloping, and compuring the coefficients of the liko
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powers of x, we obtain the equations

A' +B= 1, A - 2]]a ---0, Aa - A'(P + Ba2 = O.

Multiplying the first cquutiou hy a2
, and adding it to the

third, we have

then multiplying the second hy a, and adding it to the last,
we have

and consc([ut:ntly,
1

A=-ll;
2

substituting this value of A, we find

B =: and A I = ~1.
Suhstituting these values of A, A', and B, we have

,-?d,r:

(a: --- 1'1 )"(:1': + a)

and consequently,

I
-I 11 log-(ot' + a) + C.

25;;, VVe can integrate, in a similar manner, when the
denominator contains sets of c(lllal roots, Let us take, as

an example,

rula: III Lr..
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Make

reducing the second member to a common denominator,

we find the numerator equal to

and comparing the coefficients with those of the numera-
tor of the first member, we have the following equations:

A' +B' =0,
A + A' + B - B' = 0,

2A - A' - 2B - B' = 0,
A _ A' + B + B' = a.

Combining the first and third equations, we find A =B ;
and combining the second and fourth, gives 2A + 2B = a:

hence, we have
a

A=B=4"' A'= -!!:_4'

consequently, the given differential becomes

and by integrating,

f adx I[ 1 1 l(~-11 ~ _x=1_x:0-10g(X-1)+JOg(x+l) J+C.

256. If an equation of the second degree has imaginary
toots, the quantity under the radical sign will be essentially



]I\TEWlAL CAr.(,l'T,I'~. 227

lI('gatin~ ('\I~. Art. l-l l ), alld til" I·,d, will he of the form

.r =-- t- (/ + /,;-_ I', :1" '--I II - Ii V-=I,
;1/1<1 til(" tl\'O l,ill"llll:ti LI"lur~ ('()I'II'~I)Olld'llg to the roots
\1 til I",

(.1' - 1/ -_./, V· I) (.1' II I/'V

111'1"'1, 1',,1' ,,;[<'11 ~"t "I' illld~ill;lry ),IJlJ\..; wlurh arl," from
1,1:"'III~ t iu: dl'IIUll'ill;i\u)' ul' 11[<' 11"1,110/1 "'[Ilal III D, tlll'r(;

Ildl I,,: ;1 LII'1ur of IIII' "i"COII,] d"~I"'" uf till: Iorru

;" I :2,/,,' I 1/' 1- I/o

II -.0, .'I' = -1- /, V--::~C, ;1.' c::: - b ,;-=I,
.u«l tl«: i':wlor will ilCCOlIiC :1':<-I- I/o

III till: ("[llaliulI,

t hc rll()\s u r«,

('l)ltljlarlll~' tlu.«: values uf .t: \\iUI the l',('lll'r;d fUrIu, we
Iia vc

II, = .- :lc I, ,= c,

.u«l till' ,~i\,(,11("jllatioll takes tho form

:1''' - (j(':I' -1- !Jc:~+ (;~,O.
COlJlparill~ the ]'Oots or the eqllatioll,

with the values uf :1' in the gelleral form, we have

a=2, l)=~,
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and the equation may be written under the form

3l + 4x + 4 + 8 == O.
I

258. Let us first consider the case in whIch the deno~
minator of the fraction to be integrated contains but one
set of imaginary roots. The fraction will then be of the

form, p + Qx + R31+ Sa? +_!!c. __ dx
(x _ a) (x _ b) .... (x - h) (x2+ 2ax + a

2+ b
2

) ,

which may be placed under the form

Adx Bdx IIdx Mx + N_ + --b .... + --7 + -:::z--Z--bzdrt.x-a x- x- t u: +2ax+
a

+

The first three fractions may be integrated by the methods
already explained: it therefore only remains to integrate
the last, which may be written under the form

If we make x + a == z, the expression becomes

Mz+N -Mad---z2~ z,

and making N _ Ma == P, it reduces to

Mz+P-Z--b2 dz,
z+

which may be divided into the parts,
Mzdz Pdz
?+1J2+~'

which may be integrated separately.
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To integrate the first term, we have

j Mzdz f zdz Mf 2zdz
z2+b2=M z2+b2=2 z2+b2'

in which the numerator, 2zdz, is equal to the differential
of the denominator: hence (Art. 218),

jMzdz =M 10 (i" b2) .
z2+b2 2 g + ,

or by substituting for z its value, x + a,

jMzdZ M2---ni = -log[(x + a)2+ b2]
z +u 2

=M 10g(x2 + 2ax + a2+ b2)
2

=MlogV x2+ 2ax+ a2+ b2•

Integrating the second term by Art. 224, gives

r Pdz P _1(Z)
~ Z2 + b2 = b"tang b'

or by substituting for z its value, x + a, and for P,

N - Ma, we have

j Pdz N -Ma _1(x+a)
Z2+ b2= --b-tang =r»

and finally,

f Mx+N dx-
x2+ 2ax + a2+ b2 -

Mlogvx2+ 2ax+a2+ b2+ N "bMatang-l (xt a).

259. Let us take, as an example, the fraction

c+fx dx,
:x? - 1

20

229
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in which, if +- 1 IJC :';1l\Jstillllcd [or :1', the denominator

will reduct, to (): hClIce', :I: .-- 1 j,; ;1 LI('\ol" of il«: dCIII>llli-

nutor. l)iYidill~ hy tlli~ \';I('l"r, I\IC I'ractioll llIay Ill! pill

under the f()rm
C +- /L'____________--~ --~ ,Lt',

(,,;_ I) (,),::-i J",- I )

in \\"hi(1I ,)'! -\- ,/ i,- 1 :" th« prodllf'l of the il.l:I~ill;lry

facll)r~. ['\aeill!.', this prod,wl ('(lilal tu 0, lilldillg the rools

of IIIC "'1I::l1i"ll, :1I1(1 ("olllp:lrilig lhelil willl the general

yahle~ ill till! Iorui
:/ -\- ;21/:t' \- u" -\ // =-0,

we find
1

a =--
2

We JIlay place the given fraclioll Illlder the form

_ _!_.·~L'____-
(I _ - I) (,('; \- ;/' t I) ,'1.'

M,I I N
j- ---;,-'--- --

.I'" \ ,).' \ I

rc,llwil\!.', I.lII: ~1:(,()11I1 Jlwlldll'r 10 ;1 ('IIIIlIIIOII 11('11
11
]11111<11

1
"',

alld COllll':lrill!.', the ('()('.I]"J('.II'IIH "I' ,I' III tIl" IIIIIII"I':I\.' 'I' willi
tllOs

C
ur ,I' \II I]II! IIlllilnal()r ul' tlll~ first IIl:'ildwJ', \VI' ,,\.1;1111

(II
:\

,,1 ( i./
:\

N

/I:
t v ,

:LIlli I), ill till' ~;IIIi1'I':;\ l'"rl\,II\:' "I Art :!'-)"', :lIlIl J'llc()\\(Ic1ill!.',

that

:1

( lo!.', (,J: - 1),t' \
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we find

J' I:+ /x c +f - C +f__, _'_ do:= _._-_lorr(a: - 1) - lorr.ya;'l +x + 1
:v.l-l :3'" <I b

f f·· 'l_ c _ I ;1: +-"- i+ '---:;c- tang,----== + c.v a --" V:LJ

2lill, The eqllatioll which arises from placing the de-
nOllllllator uf thl~ ['ractioll c(lllal to 0, lllay give several
]lillI'S of illlagillary routs respectively equal 10 each other
III this ('a,e, th« factor :1'''J=21l:1_'+a''\--// will ellter

~l',v,~r:d tillle,.; into tho dcnoruiuator, or will take the Iorm

(a:" -I- 211:v -I- Ii' + Il)";

alit! hCIIC(~, that part of the fract.ion which contains the

pairs of equal and imaginary roots, must he placed under

the Iorin (Art. 2:) 1 )

111 /';,1: ]/' +- /.; ':1'
-,; --- ---- -----,~- OJ ------:-,---:---- -+- -'J .-.-----

(:1"- 1- ';lIU' 1 IF -I- /)-)" ('-1.'"1- ';l1l,1; \- I- //)"-'

If! 1_ /,'/1,,: Tin I- 1\":1'+_,------ -v. ------;, .. --c;, " •• + ---:;---- ----;,------;;.(",' + '21/.1' + ({~-\ /1') /,- - ,'J:" \- "411:1: I- (1- + Ir

Now, j'(~dll('illg ttl it <:')1111111)11 dl~l\()rnillattlr, allli comparing

the ("()I',ili(:il~l\ts, WI~ lil\d tlll~ values or tho cOllstants

II, I{, 11', / ", , If II , I\_II ••••• , 11", K" ...

arl<:r which, multiply each tcnn hy il.c, and then integrate

t hc terms :-Wl'aral.l'iy,
~il\c(~ all t111~ lCl'lllS an~of the same gelleral form, it will

(lni y I)(~ llC('CSsary to iIIkgrat.e the first term, which may

hl~ \V rittcu IIfHkr tho form
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I

which, if we make x + a = z, will reduce to

H-J(a+J(z dx
(Z2+ b2y ,

and making M = H - Ka, it will become

M +s» J(zdz Mdz
W+z2)"dz= W+Z2)P dz+W+Z2)'"

The first term of the second member may be placed under

the form KJW + z2)-Pzdz,

and integrating by the formula of Art. 217, we have

f Kzdz 1 K 1 C
W+Z2y =2 (1_p)W+Z2y-l + .

It then only remains to integrate the second term

Mdz =MJ(I?+z2)-1>dz.
(b2+ Z2)"

By comparing the second member of this equation with
formula (D), Art. 242, we see that it will become identical
with the first member of that formula, by supposing

m=l, a=b2, b=l, and n=2;

and hence, by means of that formula, the exponent - P
may be successively diminished by unity until it becomes
_ 1, when the integration of the term will depend on

that of
dz

b2+Z2'

But we have already found (Art. 224),

f dZ2 1 _l(Z)
b2 + Z2=b tang b;
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and hence the fraction may be considered as entirely in-

tegrated.

261. It follows, from the preceding discussion, that the
integration of all rational fractions depends on the follow-

ing forms:

1st.
x"'+ 1

fx"'dx=--.m+1

2d. r dx__ = ± log(a ± x).
~ a±x

sa, f dx 1 I(X)
a2+ x2 = -;;tang- a'

Integration of Irrational Fractions.
262. The method of integrating rational fractions having

been explained, we may consider an irrational fraction as
integrateu when it is reduced to a rational form.

263. Every irrational fraction in which the radical
quantities are monomials, may be reduced to a rational

form.
Let us take, as an example,

_,- 1yx--a
{rx ~ dx,x- x

or

Ix~-+a
1 I'

X3_X2

Having found the least common multiple of the indices
of the roots, (which indices are the denominators of the
fractional exponents,) substitute for x a new variable, z,
with this common multiple for an exponent, and the frac-
tion will then become rational in terms of z.
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In the example given, tbe least common lllultiple is 6;

hence we have

and substituting these values, we obtain

-IX _ '-.(j, Z3 - I It 6z" - 2az
3

" "--==_z-';-liZ"tZZ =_- dz ;
"i/x-V;1' Z -z -z

an expre~~i()n which may bl~ iJltcgrat(~ll by rational frac-
tions; aftel which we may substitute for z its value, {/;.

261. If the quantity ulIlkr the radical sign is a polyno-

mial, the fraction callnot, ill gClleral, ho rcduccll to a

rational form. \Ve call, however, reduce to a rational

form every expression of the form

in which X is supposed t.o he a rational function of x,
If we write a denominator 1, ar«l then Jllultiply the

lIumerator and denomillalur by'; 11+- lIe ± CJ?, the

expression will take the form

In which X' is a rational fUJlction of x : hence the two

forms arc essentially th(~ sallie.
I f now, we can fiud r;tti()lIal values for VA + nx ~

and for d«, in terms of a III'W variahle, the expression will

take a rational form.
There arc two cases to Ill' C()II"ilkn~(\: l st., when the

coeflleicnl uf :i' is posili\'(~; alld, 2d, when it is Ilegative.
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Let us consider them separately. First, make

.~lJa:t:·C;l = V(; ~{>'x' + x2Y 11 -j- j Vu + c

= V(;~~ b« + a?,

ill which
A

a=7;'
11

b=-.
G

III order to find rational values for (Lu and va+bx+x";
place

from which, by squuriru; hoth members, we find

and hence,
2z = a

x----'-b-~,z'
(:3)

and substituting this value in equation (1),

and by reducing to the same dcnominator,

r ,Z2 - bz + a
ya+ba:+al'= - .b- 2z

(4)

Let us now find the value of do: in terms of z. For this
purpose we will difTercntiat.e eqllation (~), WG then find

lul» .c.::: 2x'dz + 2zda: + 2zdz ;

whence we have

(Ii - 2z)d:r: c..::.: 2(x + z)dz;
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and hy suhtractin~ e([nations (1) and (4), and suh:5tituting

for x + z the value thus found, we have

2(z2 _liZ + a)
(b_2z)dx= __ ----dz,

b - '2z

and
dx'= _ 2(.z2 - liz + a) dz. (5)

(I) - 2Z)2

265. Let us take, as all example,

d:c
--.-T-=-='_=:~==·,
x v A + i1J? + C:r

which may be writtell under the form

and substituting the val lies of Va + /ix +;il and dx, from

equations (4) and (f',), we have

and multiplying the denominator by the value of x, III

equation (:3),

an« then hv V C, W(~ have

'/:1'___I_,_----~-~~---=.:---=:--:,---=-----:-)' or
y L X :c VI! -t- 1J.l' 1- :J.~

ti:c 2dz
~,~~I-,-jL~+7;= (Z2 ~ {;)/d

which i~ a rational I'llI'm, all(1 may he integrated by the

methmh already explained.
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266. Let us take, as a second example,

dx
yllt--t(} a!'

which may be placed under the form

dx

and comparing this with the form of Art. 2U4, gives

c= R, b=O,
It
c~= a.

Hence,

j. tlo: 1 f fix
-tilt .+c~x~=C tI (1 +~.

Having placed

yla + :1:~= Z + x,

we found, Art. 264, equations (5) and (4),

--,. Z2+a
yla+:1/'= --'

2z '

hence

Substituting for z its value, ami multiplying by -,
c

we

have

j. (L1: 1 [r--;--;._-===--]og va+:1:"-x] + C,
ylh+(hf c

and substituting for a its value,
It
c2'

we have
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f
d:r 1 1 l- 1 (~I .. " )J c_=== __ og - yn+ C:J;-ex +

vh+e~:1/ e - e

111 1\ ('1-'---:-·-----;-· ) C= __ ' og - 0" Y t + (;'":1; - ex: + .
e e e b

But since the (\i!r(,rClIce of the S(plafe:; of the two terms

within the parellthc~i~ is equal to It, it follows that if lc
be diviue(l hy the dill't~rcl\ce of the u.nns, lh(~ qll()li(~J\1. will
be their sum (Alg. Art. [JU). Bill, the divisioll Ill

a
y be

effected hy sllhtractiJlg their Jogarithm~. Let us, theil,

add to, and sllhtracl from, the S('COIl(\ 1I1l'1ll\Wl' uf the (;(1
I1a

-

tion, 2-\ogh. 'We shall then \liIVC,
c ,_

f
dx 1 1 1 1 1--- -_ __:::"-__=__log logh+-1ogh--1og( V h+c"./-c.I')\C;

vh+c"J," C C C C t:

or by representillg the three COl\stants _.!.., hlg~- - __!_ log h,_ c C c

and C, hy a single h;tler C, we h:tve

267. Let us take, as a third example,

1-"----;;-
drc v ni: + .1.".

Comparing this with the general form, we find

a cC::: m2 and b = 0 ;

hence (Art. 2(4),

C'l+ :J? = Z2 +_rri" and
Y 1II - 2z
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and conscqucntl y,

wlii.l: IS r:t1I()II:d III z; all(l, having 1'111111(1 1.11C illtcgral ill Z,

~ltlhlill1i" 1111: v.iluo of: III \.. 1'111" "I' :I'.

vi! 1 /)., - ( ,
H

-- :t'~
( ,

If lIOW, we llIake as hef()re,

alld square holll lII('.llIlwrs, 11\1' :'t'c()ild p()w,:r" of :1: in each

11\1:1\.1)('1' will not caur: ...l, ,IS Iwf()rt:; alld lli.:rcfurr:, :l' can-

1I0\. 1)(.; <:\pr ...;-;";I·" la1.iOllally ill t(;l'ItIS of z . \\'e m ust,

Jill'rd<lrc, pLtu: t hc ,:Liue (If till' radical under auothcr

1'''1'111. \\'(: Ivill r(:lllarl\, ill tlw Jir:,t pian;, tll:l! 111',; Ilillo-

Ini:ti II i /1.1' -- J", IIl:lV 1)(: d(:!'''llllloIS(:ll ill1.o tw 0 ratlollal

fad <) rs ul' tlte first dq'YI:l'. I,'or, if WI' make

:1:" -- b.c> a _.. 0,

:lIld d(!"iglla1e 11l1: roo1.sof lite l:qllaliull hy '" and ",I, we

have (Alg. Art. I,U)

(;1" - h.c - 1/) _ (.1: _- ,,) (:1: __ ",1),

and COllSCqIIClltiy, by changing the ;;iglls,
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and phcing the: sccond lIIcm\Jer under the radical, wc

may make

vT~'_a)(al-:J')=(:r:_a)z; (1)

squaring both memhc:rs

and hy :mppres~illl!; the com mon factor' :1,' - ",

whence, ,,' +- az2
,T=== -----,

1 +- z"

and

a' +- (,(;z"x-,,=------""
1+ z" '

or by reducing,
(,(;, _."

(1-'_,,_---= - ---I +-~"
•

which, being slllJ~titlllc,l ill the second member of equa-

tion (1), gi vcs

~(~'=---;;) =~~~;:-z;(1)
and by differentiating eqllatioll (:l), \V(~ obtain

2(,(;' a)
dl' --c- - ------ -- z.l.: (;»),,_- (l\Z')' __ ,

~69" To apply this meth()(l to a varticular example of

the form
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substitute the val lies of 'va + /)'V _:;,l. and dx, found in

':q\latiulls ('"I) and (G): we find

hellce

or, by ~llh~titlltillg for z its valno Irom cquution (I),

~70. If, ill tlte last formula, we make

II -- 1 ;uHl /, - 0,

tliC trillClTliial 1I11dn tIll! radical will become --- :r-", :lTl,l
tlte fuols of lite l'<IlIatioll :I:" _ J --:=-,0 an:

" -- _] and IX/ I.

:-lulistitlltiIlg tItCS(, values, and tlu: gtllc:ral formula l'CCOlllCS

.• '/'1'j--c. VI
.m.] if \VC ~ll]ll)flS(' tli(: illtegral to Ill: () when .r _ 0, we

sllall It;LVl:

o -- L' _ ~ 1:1l1g- I ( I)

=r:-~!C1;)') (Trig, Art. VIII)

2
2L
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Sub~titutillg thi~ valli'" <In,l we have

271. \Ve have already SCUI (Art. 21~) that

J
. J,' . -1
~C_CSIII J:;

aml hcucc,

should also represent the arc of which .1: i~ the sille.

To prove this, we have (Trig. Art. XXV)

•
Substituting fur tallg A, /1=, all,l rCllllcing, we haveV 1 +:1:

tangZA ::::~~;
."1"

thut i-, twicr: the arc \\hll~': taw,;(,lIt is
jl--:~~r~is eqllal

1+- ,I,

to the arc whose tall!!I'111 is ;J'

viI -I IS the com-

:J:

'7;-=- :/
Art. XVIII); all,l tliis arc has ;1: fur its sine. Helice,

either member of the eqllatioll
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f dx .". _I~X
_I =--2tang -1 '
-y 1-'# 2 +x

represents the arc whose sign is x.

272. Let us take, as a last example, the differential

dx1/2ax-a?

In comparing this with the general form, we find (Art.

268)
.. =0 and ..'=2a;

and Art. 268, equations (4) and (5), give

2azV x(2a - x) =-----:i'l+z

Substituting t.hese values, we have
___--..". 8a2z2d:t:

dx V 2ax - a?= - ( 2) 3 ;l+z

which may be integrated by the method of rational

fractions. t.
Rectification of Plane Curves.

273. The rectification of a curve is the expression of
its length. When this expression can be found in finite
terms, the curve is said to be rectifiable, and its length
may be represented by a straight line.

274. The differential of the arc of a curve, referred to
rectangular co-ordinates, is (Art. 128)

dz =V da?+ dy2.
I

I

243
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Hence, if it be rcq;)ireJ. to rectify a curve, given by its

equation,
1st. D~fferelltiate the C(l'Wli()1I (ifllw CUI'I)('·

2(1. Com
uillc

the clicU'crclttiu/ "(J,wli()}! titus fuund with

the given equatiun, Ulul jiJ!(l [/Lcvu/al.: I{ dx~ or dy2 u:

terms of the other variull/e.
3d. SU/istilllte the value thus foIlIld ill the di,Ui'rcllliul

of the arc, which will thun inro/re IllIt (JI/C lJ(uia/l/e (Iud

its diffcrential. Thell,I)/) ilt/I'!!,III/lH!.!,', in« shull .lind till:

length vf the arc, estimated [ruui U gireIL ]loill/,ilt terlll

S

(if one of its co_()nli/ll1tt~s.

275. Let us take, as a lirlit exaillple, the COlIllIlonpara-

bola, of which the equation is

•
Differentiating, and dividing by 2, we have

yJy == pti:;c,

and conseCluently,

suhstituting this valllc in the differential of the are, we

uavo

1 ,---== __ dy V 1/+ y2;
1)

which, being intcgrate(l by forIUula (B) Art. 23U, gIveS,1

by supposing 1ft == 1, (L == ]12, b == 1, '{I == 2, P ==2'
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J dy v'p2 + y2= Y v'~ + p2 J" dy ;
2 2 v'p2+y2

and integrating the second term by the formula of Art'.
266, we have, after making h = p2, c2 = 1,

J dy =10g(vp2+?/+y);
v'p2 + y~

and consequently,

z=!_ J dy v'p2+y2 Y ~ +LloCJ'( v'p2+y2+y)+ C.p ~ 2 0

If we estimate the arc from the vertex of the parabola,

we shall have
y =0 for z =0: hence

0= .E.logp + C or C= - Llogp j2 2
and consequently,

yvp2+y2 p (vp2+y2+y)z= +-log ;
2p 2 P

and hence, the value of the are, for a given ordinate y, can

only be found approximativcly.

276. The curves represented by the equation

y"=px"',
are called parabolas. This equation may be placed under

the form
1 '"

or by placing

v=r:«:
!. m

p" = p', and - = n', we haven
y =p'x"'j

21·

245
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or finally, by omitting the accents, the form becomes

By differentiating, we have
£1y== np:L'n -1 £1:)',

and 1.,ysubstitllting this val lie of dy III the diiferential of

the arc, we have

Now this expre~siotl will have an exact illtegral whell

I-2n-2 is an entire numher (Arl. 23[,).
If we designate

such number by i, we have for the condition of an exact

integral
1 .___ =L,

2n-2

which gives
'2i + 1

n=-:'2i

substituting this value for n, we have

or

"'+,
y = p:r"'";
y'li = l/"x2i

"",

which expresses the relation that exists between y and x
when the length of the arc can be found in finite tenus.

277. If we make i =-c: 1, we have
:1

n=-,
2

and

which is the equation of the cubic parabola.
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Under tlii~ Sllppositioll, the arcbccolllc;-; (Arl. :217)

ami lie lice, 1.111: Cltl,ic p;lral!ola is rectifiahle (Art, 273).

I f WI: csLilll:ltc till: arc lrom t.he vertex of the curve, we

have :J_'-~O, fur z--(): hCllel~

278. If the origin of co-ordinates is at the centre of the
circle, the equation of the circumference is

R~- ;r:~ l !/'
and the value of the are,

z = R j.d:r .V j(2_X'2

If the origin be placed on the curve

y2 = 2l::r _ (J;2,

• die
z =R j vi 21L~;~-___x2'and

both of which expressions may he integrated by series,

and the length of the arc found approxilllatively.

279. It remains to rect.ify the transcendental curves.

The differential equation of the cycloid is (Art. 182)

1/d1/dx'=---- -,--
V2r!J - il
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which gives
.,'1\/1/d;L~=-~'

2ry-l

Suhstitutin~ this valllc of d:c:l ill the ditfcrcnti:tl of the

arc, we obtain

til; / ~~_'_'.- ::.:(21),(21"-y)-'dy .
. V 21"---1/

But (Art. 211)
I I

f(2r _y)-'1 dy = - '2 (21" - yfi + C:;

and hence,
1

Z = _ (2r)'1 2 v'ir~-=!;+ C = - '2 y':!i'Til-=y) + C.

If now, we c";l.iJllatc n
the arc: z from n, them~
point at which v= 21', ·..7j -"'~'-""'''~

we shall have, for z = 0, ~
y = 2,-; hence A}' M t.

o = 0 + C, or C = 0,

and consequently, the true integral will be

Z = - '2 V 2;'( il~ 1f) ;

the second memher bcillg negativc, since the are IS a

decrea~illg function of t1l(: onlillatp. y (Art. :n).
If now, WI: ~lIl'l'()S(l Y to (lc('f(';tsp. until it h('(:ornp.s

eqllal to any ordinate, as J)F == M I~, /)8 will \)(: reprp.-

scntcd hy z, or by vii (\i-r - y), and nE = 2r - y.
But n(/ = BM X uE: hence

HG = v';:'~)'
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and consequently,
BD=2BG;

or the arc of the cycloid, estimated from the »ertea: of the
axis, is equal to twice the corresponding chord of the
generating circle: hence, the arc BDA is equal to twice
the diameter BM; and the curve ADBL is equal to four
times the diameter of the generating circle.

280. The differential of the arc of a spiral, referred to
polar co-ordinates, is (Art. 202)

dz = .ydu2 + u2dt2•

Taking the general equation of the spirals

It = at",

we have

249

and substituting for du2 and u2 their values, we obtain

dz = atn-1dt vn2 + t2•

If we make n = 1, we have the spiral of Archimedes,
(Art. 191), and the equation becomes

dz=adt~;

which is of the same form as that of the arc of the com-
mon parabola (Art. 275).

281. In the logarithmic spiral, we have t = logu, and
the differential of the arc becomes

dz=duV2+ c,
and if we estimate the arc from the pole,

z=uv'2.
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Consequently, the length of the arc estimated from the

pole to any point of the curve, is equal to the diagonal of

a s(luare described 011 the radius-vector, although the

number of rcvolutions of the radius-vector between these

two points is infinite.

Of the Quadrature of Curves.

21:l2. The quadrature of a curve is the expression of its
area. When this expression can be found III fillite tCrIIIS,

the curve is said to be 'ruw/ral)le, and Illay be ITIJITScllted

by an equivalent s([llare.

283. If s represents the area of the segllwllt of a curve,

and x and y the co-ordinates of any point, we have S(;!CJI

(Art. 130), that
ds :-= ydx.

To apply this formula to a gi ven curve;

1st. Find from the 'yuIIlion 11' the curve tlw value I!! Y
in terms of x, or the 'I:II{U(' IU' dx 'in terms 11- y, which
values will be expressed uruler ilu: [orms

y = F(:J), or d:L'= F(y)dy.

2d. Suf)stilute the value '!f y, or the value ,!f dx, in the

differential of the urea: we shall have

dol'= F(:r) (1:1:, or d.s = F(y) rly :

the integral of the first form will give the area of the

curve in terms of the ubscissa, ami the integral of the

second will give the area in terms of the ordinate.
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284. Let us take, as a fir~t cx.uuplc, the Iumil y of para-

bolas of which the equatioll is

y" = ]Ix"':

we shall then have
1 '"

Y=1''':1-''',

~ 1 m nIJ-'; 111 ~ n
jF(:I')'//.' ./I)":c"ti:l:= _... _._-:1: " = ---,,,{,I/+ C;

, lit + It rn + II .

1 1n

hy Sllhstil.lltlllg y Ior its v.ilu«, II ":.L'" •

If, instead of substituting the value of y in the differential

of the .ucu
ylLr,

we find the val \Ie of do: from the equation

v: =]1.'(;'",
we have

n
--1

n l/m
dx = -j-. - dy,

rn -
p"

and consequently,
_".~ .!!..+l

n r .,/m n 1/'" nJ yel:l-'== - -'~·d// =-- .~---c_-= ---xy:ni « .... m+n I rn+n
1)111 1)111

hy suhstitlltillp; .n for its vuluc,
y'"., which is the same re-

suit as before found.
Ifonce, the urea I!f any portion of a l)(wahola is equal

to the rr:clunglt: dcscTihcrl on the abscissa ani] ordinate
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n
m+ll

The parabolas arc there-

fore <juadrable.
In the common parabola, n = 2, ni cc= 1, and we

have
<)

f F(:l')dx .:z: -':'i :ry,
that is, the area If U segment is e(l,wl to two thinls of
the are« of the n;ck/lgh ricscri/)/;d oii tlu. aliscissa (fIllL

urdinate.

28:j, If, in the equation

we make n = I, and ui =-.1, it. will rq)ITseJlI. a straight

line passillg through the urigill of cu-ordillalcs, alld we

shall have

fF(:r) 11;1'= -~;I"'/'~ .

which provc~ that tlu. (/),('1/ or u /)'/Ol/!!,/C is ("/1/(// to ho!/'

the product of tlu. /HIS!; (/J(I!/wrf!('/II!tcl//ur.

2t-i(i. It is frequently Jl<~cc~sary to liJld th(~ illll'~ra! or

fllllction, between certain lilllilS of t.lw vOiriahk Oil whic!l

it depends.
A partiell1C1r notation ha~ Iwell OIdol'tcd to cxpr'~ss such

integra]';.
Itcsllmillg the GlplalioJl of the ('OIlIHlOll 1':lr;t!Hda

y'" C.-C ';.!,p,l',

I h
· . . 1 . I 1 1 f Lx _- !lily,

ani su stll.utlllg JIl t 1C cqll:lllOIi 1f1.:1.' t IG va uc 0 u. p

we have
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or, if the area he estimated from the All

vertex A, we hive C -~ 0, and illAf~~I
f YO:l' - .y --. //

.~p

If now, we \~IS!t the area to terminate ~ P 1'/-

at allY ordinate PJll :-_c I" we shall then
take the illt.cgr;.] l.ctwocn the lilll;t~ or y == 0 arul y == b;
alld, to express that ill the dillcrcntial equation, we write

I j' Ii 2 ___ I? .- 1f dlJ =c.. ---,

p.O" :3p

which is read, integral of y2dy between the limits !J = 0

and v=':
If we wish the area between the ordinates jWP = b,

Mil" = c, we must illtegrate between the limits y = b,
y = c. We first integrate between 0 awl each limit, viz. :

A ""p _ ~j' b 2d _!!__j.~ - y y - ,
p 0 3]1

Ij'C c3AMM']>'=-- y2dy=_:
]I 0 3p

we then have

I j'CI'MJlJIP:-=: AlvIN!']>' _ A1l-IP =-_ . !ldyr- Ii

fI~_ = ..2(c:l -I)').»» :!p

287. Let us 1I0W determine tile area of allY portion of
the space included between the asymptotes and curve of
an hyperbola.

22
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The c([llatioll of the hypcrlHlb referred to its asymp-

totes (An. (~C\Jlll. HIe VI, I'rop. 1\,) IS

;II}' . ,11.

In the dilfereJilial (IC u.« alca or a cnrvc yd:r, :r and y
arc c~tilll:lt(;(1 in l':,ralkb 10 co-ordinate axC~, at right all-

gles to each otller.

The (lilh'rclIIlal or t.he

area IH '.Il I', rdnrcd 10

the uhli'llw a"\('c ;1.\,
A y', i,.; the p:tr:tllclogr:lIll

F.l1 :1t1", 01 which
I'JI,=y alld /'1" .!.c.
H we dc~;gnal'~ 1I1e

angle YJX -"'-MYX Lv
(3, 'we ,.;h:ll1 huv«

area 1',\1;\1' I' yi/:I'Sill(3;

alld substituting for 1/ it., ralt((:

the area BCJHl' by s; WI: have

and H'prescllti lIe;
,'.t'

. {/:r:
ds=J1[SIIII3 ,

,'t_'

and s
.1 I (~.

If ;1(.' l~ Iii!' S' Illi-lr:IIIS\n:'" :I\I~ 1,j'I'w I:\'i'n\)()\:l, alld WI'.

lWlkc A If . J, :Il:'\ l'sliiil:dl' 11«' :111:\ S I"r(lill 11(', w r shall

have, for II' I, s 0, :111<1 "()II'''''1Ij(:I\\lv (' u ; and Ih,:.

true Integral \\' ill III.:

.tr ,or,. .. .."

L~-~ • .,._'-:-
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Rllt, since ABCD is a rhombus, and 11{=AB X Be (An.
Geolll. 13k. VI, Prop. IX, Seh. 2), and since AB = I, we
have jl[ = 1, and conscqllcntly,

s = sin,elogx.

Now, sillce s, which repre~ellts the space BCJI,[p for any
ahscis:sa .r, is cqua] to the N apcrian logarithm of a: multi,
jJli(~d I,y tIle COli stant :;ilJ,e, S lIlay he regarded as the loga~
ritful! of :J: taken in a system of which sin(3 is the rnodu,

IllS (Alg. Art. 251). Therefore, llny hyperbolic space
HeM P is lite lr~garilhJn 0./ the corresponding abscissa
A I', taken in the system whose modulus is the sine 0/ the
UII/ ..;-leincluded /)(Jlween the asymptotes.

If W(~ would make the spaces the N aperian logarithms
of the corresponding abseissas, we make sin,e = 1, which
{'uITespolicis to the equilateral hyp{~rbob. If we would
Illake the spaces tIle common logaritllJIls of the abscissas,
make sill,e = 0.1:J12!)!115, (Alg. Art. 2;'5).

2Ht-l. TIle (~qlJation of the circle, when the origin of co-
ordinates i.~placed on the circllIllference, is

anr] helice, tho diiferellfial of the area is

awl this will become, by making x = r _ u,

I

- /du(r2 _ u2)"i.

If W(~ integra Ie !IIi:,; expression by formula (B) Art. 239,

j
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we have

1 .rir=: I.2J.-dU
= - 2uy r: -11" + 2 1 V'r.2- uZ'

But we have (Art. 25:l)

f -"dll - , ( 'U )----- - co:; -'";?_UZ-' r'

and placing for u its value

f do: 'v 2rx - :1:'l =

1 ( ) _/ 2 I" ,(1' -- :1') C'--,- r-x v 2rx'-x' +-r-('()s- -- + ;2 2 r

and taking this integral between tl.c limits :1' = ° and
x = 2r, we shall have the area of a semicircle,

For x = 0, the area which is expressed in the first
member becomes 0, the first term ill 1.1jI~second member
becomes 0, and the second torm al~(1 hccomcs 0, since

the arc whose cosine IS 1., is 0: 1t<:JlcC 111(';constaut

C=O.
If we now make x = 2r, the term

1---(r - :1:) .yz,,/:-=-xx
2

reduces to 0, and the second term to

and consequently, the entire area is equal to ,r"', which
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corresponds with a known result (Geolll. 13k. V, Prop. XlI,

COl. :2).

TII(~ equation of tlw ellipse, the onglll of co-ordi-

uatcs beillg at the vcrl(~x: of the transverse axis (An. GCOHI.

Bk. IV, Prop. 1. Seh. H), gives

uud consequently, the area of the semi-ellipse will be

equal to
n f'· r:;----.f .'lux = :___(Lx: v 2/b:-,:,r:'.
A. •

Intcgralillg, as ill the last example, between the limits

1: ~-=0, and a: = 2A, and multiplying by 2, we find AB7r'
for the entire area. This corresponds w ith a known result

(All. (~eOlIl. Bk. IV, Prop. XIII).

2t-m. The differential equation of the cycloid (Art. 183) is

dx=~dy ...,
y2ry - y~

whence

J. y2dy
fyd:c = . ,V2ry_y2

and by integrating twice by formula (E) Art. 243, it will

j. rIll
reduce to ._ ,; and (Art. 22(;)

y2ry - y~

J--_rlc"-Y_-. = vcr-sill-I ( y '-
..;'2('.'1- y~ T I

I
.1. ,

But we may determine the area of the cycloid in a more

simple mallner by introducing- the exterior segment APKJI.
:!2*'
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line of ahsci~sas, ruul
signatillg any orilillalc as
](11, by z - ;2,. - !!, \V(~

shall have

F I( /J

d(A FA II) 2'/'1'.

But

whence

But this illte,gral expresses the area of the S(~gIllCllt of a

circle, of which the abscissa is!! :tliCl radius r (Art. 2I-lH):

that is, of the segment JIJJGE. If now, WI: estimate the
area of the segment from 1H, where!! 0, and the area
AFKH from AF, in which case the area AFJ{JI = 0 fur

y = 0, we shall have

A FlUI = MIG /~ ;

and taking the integral betwecn the limits y = 0 and

y = 2r, we have

AFE = semicirclc }\11(; U,

. and consequently,

area AIIBM = AFBM -- M1CR.

But th(~ base of the rectangle AF 11111is equal to the semi-
circumference of the generating circle , and th« altitude is

equal to the diameter, hence its area is t:'Iual to four times
the area of the semicircle 1'\1JG n; therefore,

,I
II areaA.IIJ3M = 3MIGH,
II'

JI_ .....

.s::"._
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au.i consequent] y, the /IF/'U AII HI, is CI)_ulfllO tlnce times

tlu: II}'!',; (!/ 1/;(: ,!.;"Clu:ruti,:p; circle,

2~)(). It IIOW remains to dc:tenuinG the arc.a of the spirals.
If we represent hy s tile area described by the radius-vee-

tOI', we have (Art. 20:l)
uhlt

tis = ---2 -;

und placing for u its value at" (Art. Itl~)

2 "" l
ils =I!_!_~

2

:~t~I~ --!1
. __ Il , c'and ,~..- .--- + ,

4n+2

and if it IS positive C =- 0, sillec the area is 0 when t = O.
After one revolution of the radius-vector, t = 2?r", and we

have

which is the area included within the first spire.

291. In the spiral of Archimedes (Art. 192)

1
11 = - and 'II= 1 ;

2?r"

hence, fur this spiral we have
e

s = 24n-2'

?r"which becomes after one revolution of the radius-
"3'

vector; the unit of the number
?r" I .-:-i' wing a square whose

side is unity. lIcucc, the area included by the first spire,
is equal to one third the area of the circle whose radius is
equal to the radius-vector after the first revo\utiOll.

In the second revolution, tho radius-vector describes a
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second. time the area described in the first rcvolutiun ; and

ill any revolution, it will pass over, or rcdcscribe, all the

area before generated. Hence, 1.0 iiud tho urea at the end

of the mth revolution, we must integrate bctwccu the limits

t=(1Jt-l)Z". ami {::...:m.2".,

which gives
m' - (fit ~~. J )'
--_--_~"..

:1

If it be required to find the area between any two spirc~,

as between the 1IItll and the (m + 1)th, we have for the

whole area to the (m + I )tll spin: equal to

(m + 1)1 -~-nil
---;1----". ;

and subtracting the area to the mth spire, gi ves

(1/1 + 1)1 _ 2m:1 + (m _ 1)1~---,-_---'- ---'-__ -'- ".= 2m'"
:3 '

for the area between the mth and (m + 1)1.11spires.

If we make 111 = 1, we shall have the area between the
first and second spires equal to 2".: hence, the area Lc-
tween the mth and (Ill + 1)th spires, is cqua] to III times
the area between the first and second.

292. In the hyperbolic spiral n.= - 1, and we have

(/
s=--.

',(.t

The area s will be infinite when t = 0, but we can find

the area included b('twC(~11 allY two radius-vectors I) and c

by integratillg bctwceu the lilllits t=-I" 1- c, which will

glVe
s = ((2 (_!__ _ .~....).

~ b c
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du
293. In the logarithmic spiral t = logu: hence, dt =-,u

hence,

aud by considering the area s = 0 when u = 0, we have

C = 0 and

Determination if the Area of Surfaces cif
Revolution.

294. If any curve BiVUvl', he re-
volved ahout an axis A X, it will de-
scribe a surface of revolution, and
ev(~ry plane pa~sillg t.hrough the axis

A X will intersect the surface in a me-
ridian curve. It is required to find the
diJkrclitial of this surface. For this -A P P' X
purpose, make A J~= ;Y', PJlI[ = y, and P P' = h: we shall
then have

f·

Pl1f = F(;r) = _II,

I I ely d?y h2

PM = F(x+h) =v+ dxh + dx21~ + &c.

"
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In the revolution of the curve B1VfM_',
"the extremities !vI and M_' of the ordi-
" nates lvIP, M_'P', will describe the cir-
, cumferences of two circles, and the
chord JllJll' will describe the curved
surface of the frustum of a cone. The
surface of this frustum is equal to -A
(Geom: Bk. VIII, Prop. tV.)

(circ.AJP+circ.M'j") I d ~K~'"
'------::----.......:. X c tor Jr1Jn :

2

Mf

P 1" X

that is, to

(2,.. 2111'+ 2 ....11[l1>1)
2 -x cllO'rdlVJM'=,.. (MP +llf'p') X chord }lfM';

and by substituting for All', M'P' their values, the expres-
sion for the area becomesr

1,
(

ely d~,/ h2 )
,.. 2y + -It +-. ~---+ &c. chord. MJU'.da: JJ/ 1. ~

If now we pass to the limit, hy making It = 0, the chon!
MM' will become equal to the arc MM' (Art. 121":5),and the
surface of the frustum of tho cone will coincide with that

of the surface described by the curve at the point M. If we
represent the surface by s and the arc of the curve by z,
we have, after passing to the limit,

ds = 2.,.yrlz,

and by substituting for dz its value (Art. 128), we have

ds = 2 ....Y vd;?-+ dy~:

whence, the differential of a surface of revolution is equal
to the circumference (if a circle perpendicular to the axis,
into the differential of the arc (if the meridian curve,
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ReJnark. It 811Ou10be observed tbat ..1' is the -axis about
wllich tIle curve is revolved, If it Were revolved about

II", ",i, Y, i, wo"ld b, ""'''''''''Y I" <0]",,,", a: into Y ""dY into ,1}.

29:), If a rigiJt augled tJ'i;lIJgle CAB be revolved about

II" 1""'/""" /i"" 1;". CA, 1/", hyI'o,./"'" "'" en will ,h"'i be
1/'" "" /i"., ... r " "i,1 " """'. 1/ we ""1"""'"" 1/", 1,,,.,, 11A
"r ,I,,· "'i""gl" I,y I"~ 1/", "hi'"d" fA by h, ""</ "'/'1'0."
,/'" '" igi" ,,/ ,,,,.,,,,, r;".",., '" II", vcn "., 0/ 1/" 'mg io C, Weslnll J!ilve

::C:y::!t:I):
!Jv=. -)/.,j' !lnd

IlClJce

~"I"'i""i"g ,1",'0 ,,,low., or 'f ''',d dy, i" II" "eo",,:" ["r.111111:1, We have "/
I
!

"b,,, i ""
Slltrace of the COlle :-Cc 'lrl) Ilt"j:. 7;-;;: =::: 27rb X·~

2
=., r-il"(:.'A B X en.

2
!.!!J(), If it rectangle /1ncr, h(~revolved around the side

IAn, ''', '''''' ,','"dily tI",r 'I,,, ""COO, of Ih, 'ig/" oylinder
WlJicJl will be d('~cril)cd by th(~,~idf) EC,. ,

Let I/., SllppOS(: III(; <l:l:is ,1])-,,11, andwtB:::::b: the
('(illatioll of tlj(~ lille DC will he y=.: b: h~ce, dy:=::: o.
,,,;,,,, ..,, i,," ,1,,,.,,, "01,,,..< i" 1/" """,,"" "pressi •• :Qf Lb,
dilli~rl'lltial of tlle SIir("C(', We have.

J ~7r.7j Vr!;~·-~-;;!i==J~'Jrl}(lx:=::: 27r bx +- c;



262 ;!M 1.1.t._"l.-,\'I';-O; fll- TUg

:mel latlll'" till; 1II1I''C,al 1)(:I\H>'11 tljt: lillllts.l' 0, a: = It,

lIw <:.\ WI.: It:lVI' '"

2~17, '1'1' find the ~llrL: ,; "l' a "l'licrl" lr-t 11c; 1:!ke the
cqllaUoll of till' In('ridi;lIl "111'11', r,'lern:t! 1" the CClItfil a"

all origJJi: it l~

:tII..! by ddl,:r. 1111:1111:;:, WI: hilI!:

,.,1,1 i /ldl/ U ;

Leucc

ill! _, 1/

StthstitUllllL!, Ior dy ll~ valu«. III Ihe dd]'''lClltl;d «f the

surface

~= .~9,'lrY /d'1.~-1 d.l' /~ H.{,'
~f:"r' V I 1/

If we csjimate the ,;llrLlc(' fr'llil III" I,lalll' jl"SSIIIL!, llir()u!.\!i

Ihe centre, awl perpellllicll!:lr tli Ihl: aXIS or x, W(' shall

~"H,,'+ C.

S .:':: 0 for .'1: = 0, alld cIlII';"'lll<'lilly t : 0,

have

Nuw, to find the enti« SllrLlIT "f t lu: "plwr,', W" JllIlst

integrate b~~n th.: 1l1111iC,'"
_- H, alld

then t~e the sum (if the mll'"rab w n liout r"f,rl'llcc to

\h~ir algebra~o signs, for till:st: stL!,I\S onl v illdu:at<: 111(' j1o-

sitiofiof the pa1\s of the sllrfan' witl: f('SI";ct to the plaue
passing through t~e centre of th,~ ~l'here,


