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"PREFACE.

Tz Differential and Integral Calculus is justly con-
sidered the most difficult branch of the pure Mathematics.

The methods of investigation are, in general, not as
| obvious, nor the connection between the reasoning and

the results so clear and striking, as in Geometry, or in

the elementary branches of analysis.

It has been the intention, however, to render the sub-
ject as plain as the nature of it would admit, but still,

it cannot be mastered without patient and severe study.

This work is what its title imports, an Elementary
Treatise on the Differential and Integral Calculus. It
might have been much enlarged, but being intended for
a text-book, it was not thought best to extend it beyond J

its present limits, -
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The works”of Boucharkit and Lacroix have been
freely used, although the general' method of arranging

-~
the subjects ‘is quite different from that adopted by
either of those distinguished authors. o«
" »
MiLITARY ACADEMY,
West Point, October, 1836.
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DIFFERENTIAL CALCULTUS.

CHAPTER L

Definitions and Introductory Remarks.

1. There are two kinds of quantities which enter into
the Differential Calculus: varizbles and constonts.

The variable quantities are generally designated by the
final legters of the alphabet, x, ¥, 2, &c.; and any values
may bé attributed to them which will satisfy the equations
in which they enter.

The constant quantitics are designated by the first
letters of the alphabet, @, 6, ¢, &c.; and these preserve
the same value throughout the same investigation, what-
ever values may be atiributed to the variables with which
they are connected.

9. If two variable quantitics are so connected together
that any change in the value of the one will necessarly
produce a change in the value of the other, they are said
1o be functions of euch other.

Thus, in the cquation of a given straight line

y=ar+b,
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if we change the value of the ordinate y, the value of @
will also undergo a change : hence, y is a function of @,
or x a function of y.

This general relation, which mercly implies a depen-
dence of value, is expressed by

y=F@), o, a=F);

and the equations arc read, % a function of @, and x a
function of y. This dependence of value may also be
expressed by the equation
F(‘Tr _7/):0)
which is read, function of @, v, cqual to 0, and merely
implies, that w depends for its value on ¢, or y on .
3. The letier which is placed in the first merber of the

equation is called the function, and the one in the second

member is called the varieble.  In the equation ¢
y=Fa),
y is the function and @ the variable, and in the equation
z=I'(y),
2 is the function and y the variable.
4. In the equation of the struight line
y=ax+ Db,

it is plain that if the value of 2 is increased the value of
y will also increase, or if @ be diminished the value of ¥
will diminish: hence, y and x tncrease together, or de-

crease together, and y is then said to be an increasing
Sfunction of the variable .
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DIFFERENTIAL CALCULUS. 11
In the equation of the circle
&4yt = I, or y¥=R:—a?,

the value of ¥ increases when @ is diminished, and de-
creases when @ is augmented : when this relation subsists
between ¢ and w, o 1s sad to be a decreasing function,
of the variable a.

5. If in any equation of the form

y= I,
the value of 4 is  expressed m terms of @ and con-
stants, as for example, if

y ot or y = 32+ ba’, &,
y i then said o be an eaplicit function of .
But if the value of the function is not dircetly expressed
in terms of the variable on which it depends, as v the
cquation

y' = Bawy | at == 0

or il the dependence s cxpressed by means of an inter-

medinte variable, as i the equations
Yo I“('Il), [l ["(11'),

y is then said 1o besavdmplicit or implicd funetion of .
Ihe roots of an equation, for eximple, are implicit fune-
tions of the coctlicients.

6 I every equation of the form

y = F(w)

cither the function y, or the vartable o, may be made to
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change its value according to any law whatever, and the
corresponding change which takes place m the other, will
be determined by resolving the equation.  Thus, in the

equation of the circle

a’ - y'z, = R?,

if we change the value of either & or » by a uantiny
# A, the corresponding valne of the other variable may be
determined from the cquation, and the differenee between
it and the primitive value, will express the change of
value.

The law of change is gencrally imposed on the variable
2, and as this law is arbitrary, @ is called an endependent
vartahle.

It simplifies the operations of the calenlus, to inerease or
diminish the variable @ uniformly ; that is, to change 1t
from one state of value to another by the addition or sub-
traction of a constint quantity; and since the law of
change 1s arbitrary, this =upposition does not render the
calculus less general.

7. Although the values of the variable guantitics may he
changed at pleasure withont affecting the values of the
constants with which they are conneeted, there is, never-
theless, @ relation between them which it is important to
consider.

If in the equation

y = I'(x),

a particular vilue be attributed either to- 2 or 7, the other
will be expressed in terms of this value and the constant

quantitics which enter into the primitive equation.  Thus,




e

P

DIFFERENTIAL CALCULUS. 13
in the equation of the straight line
y=—ax+b,
if a particular value be attributed to a, the corresponding
value of y will depend on @ and b or if a particular
value be attributed to 7, the corresponding value of @ will

likewise depend on e and b The same will evidently be

the case in the equation of 1he circle
d eyt = R

or in any cquation of the form
= I ().

Hence, we see that, althongh the clanges which take
place in the values of the variables are entirely indepen-
dent of the constants with which the vartables are con-
neeted, yot the absolute vidues are dependant on the
constants,

H. Sinee the relations between the variables and con-
stants are not affected by the changes of vadue which the
variables may experienee, i follows that, if the constants
be determined for partienlar values of the variables, they
will be known for all others.

Thus, in the equation of the cirele

‘,jl,il_{_y? . I{B’

if we make a =0, we have

or if we make y =0, we have
x=-*tR,
2
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and the value of 42 will Le equal o the distanee from the
origin 16 the point in which the circmulerence cuts the co-

ordinate axes, whatever be the vadue of @ or y.

9. The function ¢, and the varable o, nay ba so re-
lated 1o cach other as to redoce to Ot the sune time,

Thus, in the equation of the paraboly
_.'/” Lpr,
which may be placed wder the general form
D, )= 0, or y o (),
if we make a0 we have oy o0, or if we niake
y =0, we shall have o 0

10, We hove thas Lo siposed the funetion to depend
on i single varinble; 1t may however depend on several.
Let us suppose for exnple, that dopends forts value

on a1, and Zoaweexpress thix dependence by
we Py, )
If wemake x=0, we have
w1y, 2);
if we also make  y -0, we bave
w- - I(2);
and if in addition, we make  z=0, we have
W@ constant,

which eonstant, may itsell be equal to 0.

11. Let us now examine the change which takes place
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in the function for any change that iy be made in the
value of the variable on which it depends.

Lot us tike, as a st example,
4
2 TR0

anidd suppose o to be inereased by any quantity h. De-
sionate by of the new value which 7 assumes, under this

Suppasition, acd we shall have
W - R
ar by developing

W anp 2anh ol

Hwe sabiract the fimst equation from the last, we shall

have

Woam o aah & al;

henee, if the variable @ be increased by /Ay the Tunction
will be incrveased by @awfe (002

I hoth members of the Tast equation be divided by &,
we shadl have

wo—-u

= Qaar ah, (1)

which expresses the ratio of the increment of the function

to that ol the variable.

12. The value of the ratio of the inerement of the fune-
tion to that of the variable is composed of two parts, Raz
and ¢k, [ now, we suppose A 1o dininish continually, the
value of the ratio will approach to that of 2ar, 1o which
it will hecome equal when £ 0. "The part 2ax, which

is independent of i3 therefore the Limit of the ratio of
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the increment of the function to that of the variable, and is
called the differential coefficient ol u, regarded as a func-
tion of w. 'The term, limil of the vatio, designates the
ratio at the time A passes from ils fast value o 0.

If we designate by da the last value of h, that is, that
value which cannot be diminished withoul becoming 0, and

by du the corresponding value ol « —u, we shall have

o

"

=Lax. (2)

The letter o is used merely as a characteristic, and the
expressions du, diw, are vead, dilterentinl of w, differentiat
of a.

Tt may be difficult 1o understand why the vadae which /£
assumes - passing from cquidion (1) to cauation (12, 15 re-
presented by de in the first member, and made equal to O
in the sccond.  We have represented by de the fast value
of Jr, i this value foras no appreciable part ol hoor oo
For, if it were a finite quantity, iomisht be diminished with-
out hecoming 0, and therefore would not e the st value
of h. By designating this fast vadne by da, wo preserve i
trace of the letter @y and express ol the sioe time the
last chanee which takes plce iy as hecomes cagual
to U.

13. Let us take as a sccond example,
w == an’.
If we give to @ an increment o, we shall have

W =af(x+ )y =’ 43 aha? 4- Salfe 4 ald.

hence, W — w = Bahat + Jalie A ali
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and the ratio of the werements will be

1w —u . 2
MM gt A+ Buba A ol
h
and the limit of the ratio, or differential coefficient,
dn .
= Baal.
d
In the function
y == nat,
the differential cocflicient 18
du ]
S =4
dr

17

14. We have seen, in the preceding examples, that the
Jiflerential coeflicient, or limit of the ratio of the increment

of the function to that of the variable, 1s entirely indepen-

dent of the imerement attributed to the variable.

We now propose 1o show that the same is true for any

function whatever.

Every relation between a function u and a variable z,

cx[n‘csscd by the equation

u = F(x),

will subsist between the ordinate and abscissa of a curve.

For, let A be the
origin of the rectangu-

lar axes, 4X, AY.

In the equation
u == F(x),
make =0, which
will give

u = a conslant:
2'

/

L x
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lay olf 48 equal to
this constant. Then
attribate values o a,
from 0 to any linit,
as woll negative as

positive, and find from

the cquation T
/4
U = F({L’),

he corresponding values of u.  Conceive the values of @
o be laid off on the axis of abscissas, and the values
f u on the corresponding ordinates. The curve described
hrough the extremities of the ordinates will have for its
:(luali()ll
u=1'(x). (1)

15. Let @ represent any absclssa, AIl for example,

md u the corresponding ordinate 1.

[f now we give to @ uny rbitrary increment h, and

nake 1= h, the value of 1 will hecome equal to £°C,

which we will designate by /. We shall then have

W= I(x-+ k).
But  Fe4 )= 1P+ CD, and HP =u=F(2)

Now, for a given value of A, €D will vary if I’ be

tel
noved along the curve: hence, D will depend for its

sdue on @ oand &, and we shadl have
CD=1"(r, It):

he notation, IY, F, &ec., designating new, or different

unctions of «.
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But since CD becomes 0, when /o0, Lomust be a
fuctor of the sccond member ol the cquation, and we may

therefore wrile,
CD = 1" (=, h)h
Hence, wl = (e ) = () 4+ 17 (2 W)y (2)
and transposing  F(@) ~w, we hiwve
W —w = I (e, )b (B)
But since ' — u = G = tang CPD. h, we have

W — - tang CPD = 17 (ay B

W —u , v
hence, S lang CIPD =17 (e by, (4)
(2

If now we suppose =t 10 diminish continually, the point
¢ will approach the point P, the angle €20 will be-
come nearer and nearer equal to the angle PP, which
the tangent line forms with the axis of abscissas.  If we

pass to the limit of the ratio, we shall have

ilz”‘ g PTH = P (); (5)

&£

and it remains to show that, this differential coeflicient is
mdependent of A

"T'o prove this, we will observe, that whatever value may
he attributed 1o Ay o sceant tine, A€ can always be
drawn through £ and the extrenity ol the corresponding
ordinate.  The ratio of the inerements of the ordimate and
abscissa may then be expressed by the tangent of the an-
gle CPD; and siee any secant will beconme the tangent

PT, when we pass to the limit, it follows that, the lonat
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of the ratio which s represented by the tangent of the
angle P'VH, is independrent of the increment .

When, therefore, we puss {from equation {4) which
expresses the ratio of the increment of the function to that
of the variable, to cquation (5) which expresses the limit of
that ratio, the sccond member of cquation (1) must be
made independent of kb, which 1s done by muking b= 0;
and since the second member itself does not bhecome 0 1t
follows that there is at least one terny in £ (a, &) which
does not contain A.

If then, we divide the second member of equation (4)
into two parts, one independent of J, and the other con-

; taining £ as a factor, it may be written under the form
F'(ay b)) = F'7 (@) + IY(a, R)h.

Substituting this value of F*/(2, k) in equation (2),
we obtain

W = F(x)+ F"(2)h Y (x, R)I2,
or, W=u+ I (x)h+ FV (e, 1)1,
or by omitting a part of the accents,
W=u+ F(xyh+ I (2, 1)1 (6)

Hence, also,

”’7 " P @)+ P, IR, (D)
f
and by passing to the linit

L= P ). )

dr

16. Let us now resume the discussion of equation (6),

W=u+ I (2)h+ I (2, )1, (9)
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This cquation expresses the relation which cxists be-
tween the primitive function , and the new value W
which it assinnes, when an inerement Ji i atiributed to
the variable . We sce that the new value of the func-
tion is composed of three parts.

1st. The primil/iw: function w.

od. A function of a multiplicd by the first power of the
merement 7.

s A function of @ and A multiplicd by the sccond
power ol the nerement .

We may also remark that, the coeflicient of Wotn the
secoud Termy &5 the differential cocflicient of the function
v e that the Hedrd terne will vanish whes we pass 1o the
(il or mele W 0O,

In order to render the form of the equation as simple as

possible, letus ke
N - Py and B (e B = P,
the equation will then beeone
W _=u b PRy PR (10)

or, W - Pho)- 112
The coellicie T netl i

e coeflicient 12 is in general o function of @, yet the
relation between # and @ may be such as to make I a
constant quantity, in which case 1”7 will bhe 0, or the

relation may be such as to render 1" constant.  These
cases will be Hlustrated Ly the examples.

17. 1 we take equation (%), which is

!
S P ()= P

o
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and multiply both members by da, we have

hence, the differential of a function is equal to its dif-
Serential coefficient multiplied by the differential of the
variable.

18. The differential of the function may also be ex-
pressed under another form. For, if we multiply both
members of the equation

du

by dz, and omit to cancel d in the first member, we shall
have

in which either member expresses the differential of the

function .

19. We may conclude from the preceding remarks that
thatdifferential of a variable function, is the difference be-
tween two of its consecutive values, by which terms we
mean to designate that difference which cannot be dimin-
ished according to the law of change to which the function
has been subjected, without becoming 0.

20. We also see that, the Differential Calculus is that
branch of mathematics, in which the properties of quan-
tities are determined by means of the changes which take
place when the quantities pass from one state of value to

‘another.

21. If two variable functions u and v, are so connected
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together as to be always equal 1o cach other, whatever
vitue may b oattributed to cither of them, their differ-

entials will also be ('1/J/:1/.

For, suppose hoth of them 1o be funetions of an me-
;

- 3’ AT
pendent vinieDle o W shindh then e { Xvt 16),
AT hov P
o v Qb W

But, sinee @ and @ are, by hvpothests, cqual to cach

ethier, e well s wod o, we have
Phov 10 Qo QU

or by dividing by oand passing to the it

PG
)
n i
li(‘l"':‘, SE
(I8N [N
!
o du do
adie o .y
1/J‘ 1].1'

thet io, the difrerentind of @ is equal to the difterential of »
(At sy

. s . o .
2, Phe reverae ol the above pronosifion 15 not gene-

rdly trie s et us, if fo didferentiads are equal o cnch
other ave are woial Liberly to concliede tiont the funclions
Srom awhicl they were deriped are also equal.

FFor, if we have the function
b 40 1'(r),

the values of « and b will net be affeeted by attributing
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and multiply both members by dx, we have

hence, the differential of a function is equal to its dif-
Serential coefficient multiplied by the differential of the
variable.

18. The differential of the function may also be ex-
pressed under another form. For, if we multiply both
members of the equation

du

by da, and omit to cancel dz in the first member, we shall
have

%dm:Pdw,

in which either member expresses the differential of the
function .

19. We may conclude from the preceding remarks that
thatdifferential of a variable function, is the difference be-
tween two of its consecutive values, by which terms we
mean to designate that difference which cannot be dimin-
ished according to the law of change to which the function
has been subjected, without becoming 0.

20. We also see that, the Differential Calculus is that
branch of mathematics, in which the properties of quan-
tities are determined by means of the changes which take
place when the quantities pass from one state of value to
‘another.

21. If two variable functions # and v, are so connected
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together as to be always equal to each other, what.cver
value may be attributed to cither of them, their differ-
entials will also be equal.

For, suppose both of them to be functions of an inde-
pendent variable 2. We shall then have (Art. 16),

i == Ph+- PR,
o —v=Qh+ QNI

But, since «/ and o/ are, by hypothesis, equal to each

other, as well as » and v, we have
Ph+ P2 = Qh+ QF,

or by dividing by % and passing to the limit

. P=Q
l du dv
1cnce — TN e,
¢ de ~ da’
du dv
and, o dz = -y dex,

that is, the differential of w is equal to the differential of »
(Art. 18).

22. The reverse of the above proposition is not gene-
rally true : that is, if two differentials are equal to each
other we are not at liberty to conclude that the functions
Sfrom which they were derived are also equal.

For, if we have the function

-

bu + a = F(z),

the values of @ and b will not be affected by attributing
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an increment % to xz: we shall therefore have (Art. 16),

b + a = bu + a + Ph+ PR,

or, b(u_/l_i):P—i-P’h,

]
or by passing to the linit
I)—rhfn:]’, hence,  bdu = Pda.
dx

Now, bdu is the differential of the function ba s
well as of the function b+ a: and hence we may
conclude

1st. That every constant quanluly connected with
variable by the sign plus or minus will disuppear i the
differentiation.

2d.  That the differential of the product of « varriable
quantity by « constant, is equal to the differential of the
' variable multiplied by the constant.

3. That the differential of a constunt quantity s

; equal to 0.
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CHAPTER II.

Differentiation of Algebraic Functions— Succes-
sive  Differentials— Taylor’s and Maclawrin's
Theorems.

23. Algebraic functions are those which involve the sum
or difference, the product or quotient, the roots or powers,
of the variables. They may be divided into two classes,

real and imaginary.

24. Let it be required to find the differential of the
function.

U =ax.

If we give to @ an increment A, and designate the
second state of the function by #/, we shall have

W = ax + ah =u + ah,

wW—u __
Bt
hence, du = adx, or #L—dw = adx.
ax

25. As a second example, let us take the function

U = ax®.
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If we give to @ an increment %, we have

U = ax*+ 2ahx + al?,

'I 4 w—u

| [ of several variable terms : that is, of the form

=Q2ax+ ah:
h '
hence, du = 2axda.
M 26. For a third example, take the function
= a2
[ giving to @ an increment %, we have
L u —u
i | T a2’ + 3axh + ak?,
il or passing to the limit
|
|l du g
. ‘ ‘: 7 i 3ax*; hence, du=3aa’dx.
:‘ 27. Let us now suppose the function « to be composed

in which y, z, and w, are functions of .
| If we give to @ an increment h, we shall have

W—u=( —y)+(z—2) 4w —w):
hence, (Art. 16),
W — u=(Ph+ PI) + (Qh + QW) — (Lh + L'K*),

! ' F <
| o, L= (P+ Ph)+(Q+ QW) - (L+ L)
i
7 or by passing to the limit
jd-‘;':P‘l' Q-L,
l LAY vV / d

. oA
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and multiplying both members by da, we have

—%tlx: Pdxz + Qdx — Lda.

But since P, @, and L, are the differential coefficients
of y, z, and w, regarded as functions of a, it follows (Art.
17) that, the differential of the sum, or difference of any
number of functions, dependent on the same variable, is
equal to the sum or difference of their differentials taken
separately.

28. Let us now determine the differential of the product
of two variable functions.

If we designate the functions by » and v, and suppose
them to depend on a variable z, we shall have

w =u+ Ph+ P12,
v =v+ Qh+ QN
and by multiplying ’
W' = (u+ Ph+ PR (v+ Qh+ Q) ;

if we perform the multiplication, and omit the terms which
contain 2% which we may do, since these terms will vanish,

when we pass to the limit, there will result,

v —ww

=vP+uQ,
h
or passing to the limit,
d (uv)
.. =vP+4+uQ;

therefore, d(uw) = vPdx + uQdx = vdu + udv.

Hence, the differential of the product of two functions
dependent on the same variable, is equal Lo the sum of the

> 2 e
f‘i; "'ﬂ
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products which arise by multiplying each by the differ-

ential of the other. "
9. If the differential of the product be divided by the

product itself, we shall have
d d 3. wb
d(w) _ du | dv

uw u B ¢

dividing each differential by its variable.

We can easily determine, from the last formula, the
differential of the product of any number of functions.

For this purpose, put v =ts, then

a0 de o ode Ot
TR e

— T —

v ts

and by substituting for -v in the last equation, we have

___d(___uts) — iu__ + _d_t_ -+ is_.;
uts U t s
and in a similar manner, we should find
d(utsr....)  dw  dt ds | dr
um...._u+t+s+r""&c'
If in the equation

uts u t+3’

we multiply by the denominator of the first member, we
shall have
d(uts) = tsdu + usdt + utds ;

and hence, the differential of the product of any number
of functions, is equal lo the sum of the products which

that is, equal to the sum of the quotients which arise by:

“

™
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arise by multiplying the differential of each function by
the product of the others.

30. To obtain the differential of a fraction of the form
u
— we make
v

u
— =1, and hence u=tv.
v

Differentiating both members, we find
du = vdt + tdv ;

finding the value of dt, and substituting for ¢ its value
u v
— We obtain

du  udv

L

v v

or by reducing to a common denominator

e =,v4m —udy

i 2 1
vl

hence, the differential of a fraction is equal to the deno-
minator into the differential of the numerator, minus the
numerator into the differential of the denominator, divided
by the square of the denominator.

u

31. If the numerator » is constant in the fraction ¢ = =

its differential willbe O (Art. 22), and we shall have

dt = —1-1(11_} or ﬂ.: _u_

v’

When u is constant, v is a decreasing function of #(Art.
4), and the differential coefficient of ¢ is negative.
This is only a particular case of a gencral proposition
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For, let u be a decreasing function of . Then, if we
give to x any increment, as -+ %, we have
W =u+ Ph+ PW,
or, W —u= Ph-+ P
But by hypothesis u>w'; hence, the second member
is essentially negative ; and passing to the limit,
du Hedice

— I — #

da

hence, a decreasing function and its differential coefficient
will be affected with contrary signs.

e

32. To find the differential of any power of a function,
let us first take the function «”, in which n is a positive
and whole number. This function may be considered as
cpmposed of n'vfactors cach equal to u. Hence, (Art. 29),

B e I e T TR PR,
v (wuuu . . . .) u u u

But since there are n equal factors in the first member,

there will be 7 equal terms in the second ; hence,

d(w) _ ndu,
~
therefore, d (") = nu"~" du.

If n is fractional, represent it by -g-, and make

. 4
v=u', whence, =10

and since r and s are supposed to represent entire num-

bers, we shall have

= du=sv'"'dv ;

o
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from which we find

r—1 r—1
rU
dv=—cdu=—7— du,
"
su’
L v o=l iy a o
or by reducing b ’
r -1 } 2
dv=—u’ du; Y <t
s :

which is of the same form as the function
d(u") =nu""" du,
by substituting the exponent —;- for n.
Finally, if n is negative, we shall have
il

U=

from which we have (Art. 31),

a1\ —d) _ —n™ du,
(L) 00 o =B B,
hence, by reducing
dw")= —nu"""" du.

Hence, generally, the differential of any power of a
function, is equal to the exponent multiplied by the func-
tion with its primitive exponent minus unity, into the
differential of the function.

33. Having frequent occasion to differentiate radicals of

the second degree, we will give a specific rule for this
class of functions.

Let v = YU, or v=1u'}

1
then, dv = —2—u2 du =




:
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3
that is, the differential of o radical of the second degree,
is equal to the differential of the quantity wnder the sign,
dwided by twice the rudical.
34. It has been remarked (Art. 2), that In an equation
. of the form
| u = F(x),
: we may regard » as the function, and o as the variable,
' or x as the function, and w as the variable,  We will
+
now show that, the differential coefficient which us obtained
' by regarding w us a function of x, is the veciprocal of
that which is obtained by vegarding X as « function of .
. 2 . . !
o If we consider w as the function, the ratio of the -
crements will be represented by
(1)
!
or since 2 —x —h, we have (A 16),
|
! W —u 1 ) 1
: h h - 1
Ph+ P'I? P+ Ph
or by passing to the Junit
du 1
‘ de 17
P
" But when we pass to the limit, the denominator of the
. . i
b second member of equation (1) hecomes ) hence,
[ du
|
de 1 1
‘ du P ((/u
{ dx
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To illustrate this by an example, let

L

K 3 R
u=2a% whence a= Ve =ude

2
e -
Now —= Bt 3uly
’ o

but regarding @ as the function

dr ] . 1 7],
du S Jut

35, 11 we have three varables vy, and w2, which are
ntually dependant on ench other, the relations between

them may be expressoed by the vqguations

w (), and o Y (),

I now we attribute to @ an increment 2, and designate
by &, the change which takes place in gy, we shall have
(Art. 16),

W ow g Pk IR, y o=y Qb+ QW

gl !
anl LU P PR, P Qo Qhy
f h
If we multiply these equations logether, member by

metnber, we shall have
r ',
“’_7,',{’ % »'_/_f), ¥ (P + PIH(Q+ QR);
v 13

but k=4 —y; hence, by dividing and passing 10 the
limit, we have

I lu I
du du x ay

O 5

de dy da

anl hence, if three quantities are mutually dependant on
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34

cach other, the differential coefficient of the first regarded
as a function of the third, will be equal to the differential
coefficient of the first regarded as a function of the second,
multiplied by the differential cocfficient of the second re-
garded as a function of the third.

36. Let us take as an example

L v=bp, u = ax®,

we find

dv du
37—31)14’, 7&;—2”'

dv dv _ du

Bat, d—‘;:—d—ux—d—5=3buzx2am=6abu2w;

and by substituting for u, its value @’z*,

%’ —6a%?, and  du=6abatde.

EXAMPLES.

1. Find the differential of « in the expression

. R )
g : : ? z 4
Put @—a*=y, then u=y", and the dependence be- .{

tween w and a, is expressed by means of y, and u is
an implicit function of . Differentiating, we find

d Pl % d
Moty T=g(@—at) T end H=—2a;

dy
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by muitiplying the coefficients together we obtain

du 1 9 _'l‘ v
BV manfia® . 08) B e
dx 2 ( ) V=2
hence,
d — adx
U B
Vit — 2
-2, Find the differential of the function
u=(a+ 1;.1‘")"'. >‘
.Place a4 ba"= g thenss d=yT e o gnd
lu 5 e
%/[ = my™"" = m(a + ba")
(il]% = nba™"';
hence,
du . ]( +[ n)m—l o
i ha! x y
7 = mnb(a Y v

du = mnb(a + ba") . @ da.
., 3. Find the differential of the function
u=a(d’+a*) Va® —a?,
du = <(a2 + a?) Vm) de + aVa' — 22 d(d® + 2?),

ta(a® + af)d Vi — 22,

in which the operations in the last two terms are only
indicated. If we perform them, we find

d(az -+ 'l'z) ] (l(a."z) = de.r,
d(—2*) — xdx

- AP—D

dydd—o*=
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Substituting these values, we find

: d"=[(a2+12)\/c72t7”+2m2m "j/( +y2]lx
: [l

or, reducing to a common denominator and cancelling the

like terms,

(« k(/ 2% -/11 ')

du =" AP

b \/(L —a”

Pt
i 4. Find the diffcrential of the function
i

i
Dot
] )g

i (a—}—a)?‘Jr.)‘)zl (et Py e (i — 2F)d (! | oaa? 71)

) au= (' A w4 anty?
by
‘ ’ ' from which we find
‘| (lu:#‘-‘)l(‘)”i 1 "(/: ——{Q(/r
Vo (et - au? s 1“)"'
Eoy
; 2 5. Find the differential of the funection

‘f U= ’ (a~f 4+ «f(( — w‘)")

! :: Make Y= —b:, Z= ‘V:i (¢ —a*Y,

then we shall have

=Vu—ytay=(a—y+2)';

B e
.s]a
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we therefore have (Art. 32),

Y
du:—Z—(a—y+z)“ dle — y+2),

:—f:—(a 42 (= dy+ da),

— 3dy + 3dz

But froni the equations ahove, we find

. b d+/a  —bdx
Ly = d(—- ,_——/'""——:'-——:;
= ( \/.'1:> " L \/w

P} o 7
dz = d(¢* —a*)* - —?;~((:'"' —a”)? " (* —a?),

2 .
= 'T;‘((;z —at) ?

Substituting these values of dy and dz, in the ex-

pression for diuy, we find

3 /) 4 »
he 1 o %_’_‘{I S \_/i ﬁﬁ ‘,' .
! \/" . by A
6. u= L; Aot — _:_dxi.
Y ¥
1 — nddw
o= ™’ du = i
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- (a+ x)dz
8. u= vV2ax+ oa* du = ———.
i y Veax 427 ‘

9. u=(a®+2%, du = 6(a® + o) wdz.

10. u=a*+8a*?+ 8% + 2%, du=6(a*+ m’)zxda:.

7(14. u=[a+ b—-;z - A =
b

16, i=a'y" du = 22%ydy + 2y xda.

(V* 4 y*)eda+-(a +a*)ydy
N, ,‘/ 2 1/ 2 2 d — ——— — .
16.u— a+a.'2>< b+y’ U ‘/a2+x2»\/b2+y2

2 _ na"ldw
\/\17. u=m§; du—(1+w)n+l .
142 _Aadx
" i3 e =
dz +dy) — (24 y)3dz
19, u=25L, PAIC.A L Sl st s
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_ Jifa+/I—a de(1+ VT—2)
& “Vita—-VYi—a iz AV — 2

21. Find the differential coefficient of
F(x)=8a"— 382" — bz
Ans. 82a° — 92 — 5.

22. Find the differential coefficient of
F(x) = (& + a)(32" + b)
Ans. 15a* + 8a%b + 6ax.
23. Find the differential coefficient of
F(2) = (a2 + o),
Ans. 2(ax + 2*)(a+ 2).
A 4. Find the differential coefficient of

F .'C'):—-—x-—-——,
( 2+ V1 ~2*
Ans. .

Vi—a(1 +22Vi—a)

Of Successive Differentials.

87. It has been remarked (Art. 16), that the differ-
ential coefficient is generally a function of . It may
therefore be differentiated, and « may be regarded as the
independent variable. A new differential coefficient may

thus be -obtained, which is called the second differential
coefficient.
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35 In passing from the function 2 to the first differ-
ential cocflicient, the exponent of @ in every termn in
which « enters, will be changed ; and henee, the reli-
tion which exists between the primitive function w0 and
the variable ay, 1s different from that which will exist
between the fiest differential coellicient and . Henee,
the swne change i@ will occsion different degrees of
change in the primitive function and in the first differental
coeilicient.

The sccond differential coclficient will, in general, he
a function of 2: hence, a new differentinl - coctlicient
mav he forimed from it, which will also he a function
of w: and so on, fur succeeding differential cocflicients.

If we designate the successive dilerential coeflicients

hy

we shall have

dw " do 0 de

But the differential of p s obtained by diflcrentiating

) du . .
its value —°, regarding the denominator da as con-

o

stant; we therefore have

12
d <d—l—(> =dp, or, Lﬁ =dp,

e du

and by substituting for dp its value, we have

d*u g
—= (],

da?
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The notation o, indicates that the function ¥ has
been differentiated twice, and s read, second  differential
of u. Fhe denominator da expresses the square of the
differential of x, and not the differentinl of 2® It s
read, differential squure of x, or differential of x squared.

If we dilferentinte the value of ¢, we have

d?u d*n
d{~ 7Y =de or ——=dg;
da? & ’ da* 1
d*n
hence, -y &,
du

and in the same manner we may find

d'u

dat 7

. . . .. dn . .
The third differential coefheient 7-%, is read, third
da

differential of 2 divided by de cubed; and the differ-
entiad coeflicients which sneeced ity are read in a similar
manner.

Hence, the successive differential cocflicients are

du d*e d*n ) d'u

P LI Ak LR

&e.,

from which we see, that cach differential coefficient 1s
deduced from the one which precedes it, in the same
way that the fiest is deduced from the primitive function.

39. If we take a function of the form

— mt
U= qa’,

4’
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we shall have for the first differential coefficient,

du
— =nax""".
dx
If we now consider n, @, and dx, as constant, we

shall have for the second differential coefficient

d*u
= n(n—1)aa""

and for the third,

%:n(n— 1)(n— 2) az%, . r

and for the fourth,

% =n(n—1)(n— 2)(n— 8)aa""".
It is plain, that when 7 is a positive whole number, the

function

u=aa",
will have n differential coefficients. For, when n dif- U
ferentiations shall have been made, the exponent of z in
the second member will be 0; hence, the nth differential
coefficient will be constant, and the succeeding ones will
be equalto 0. Thus,

‘_i.x:.;=n(n—-l)(n—2)(n—3) covoee Wil
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Taylor's Theorem.

40. Tayror’s ‘Tnrorey  cxpluins the method of de-
veloping into a scrics any function of the sum or diflerence
of two variables that are independent of cacl other.

41. Before giving the demonstration of this theoremn,
1t will be necessary to prove i principle on which 1t de-
pends, viz: if we have a function of the sum or difference
of two variables of the form

w=I(x=+7y)
the differential coefficient will be the same if we suppose X

to vary and 'y to remain constunt, as when we suppose 'y
to vary and X to remain constant,

For, make xry=al:
we shall then have
u = I'(a’)

du
and T P.

If we supposc ¥ to remain constant and x to vary,
we have

do’ = du,

and if we suppose a to reman constant and ¥ to vary,
we have
(ZIL’/ fomad ([’I/

But since the differential coefficient p is independent
of d/ (Art. 15), it will have the same value whether,

do! = dx, or, do/ = dy.
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To illustrate this principle by a particular example, let
us take

u={(x+ y)".

If we suppose @ to vary and y to remaimn constant,
we find

du_ w1
Dzt gy

and if we suppose y to vary and 2 to remain constant,
we find

du

o n-—l
& =n(z+y)

the same as under the first supposition.

42. Tt is evident that the
F(z+y)

must be cxpressed in terms of the two variables « and y,
and of the constants which enter into the function.

Let us then assume
Fla+y)=A+ DBy + Cy* 4 Dy +, &e.,

in which the terms are arranged according to the ascend-
ing powers of , and in which 4, B, €, D, &e., are inde-
pendont of y, but funcuons of a, wnd dependant on all
the constants which enter the primitive function. It
now required to find such values for the exponents @, b, ¢,
&ec., and the coeflicients A, B3, ¢, D, &c., as shall ren-
der the development true for all possible values which

may be attributed to & and y.
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In the first place, there can be no negallve exponents.

For, if any term were of the form

1t may be wrillen

and making » -0, this tenn would hecome infinite, and

we should have
I"(.L‘) Y 5 5

which is absurd, sinee function of e, which is independent

ol g, does not necessarily become infinite when 2 0.
The fiest term A, of the development, 1s the value

which the primitive function assimes when we make

y 0. 10 we designate this vadue by, we shall have

I"("I,‘) e T
I{ we make
(o 1),

and differentinte, under the supposition that @ varies and »
remiting constant, we sladl have
dw' dA o, de dD !
e I g -yt &eels
e e dr- oo 4 d J
and if we differentiate, regacding % as a variable and @

as constant, we shall find

!
= Byt Oy T e Dy &l s
dy Y } Y | Yy {-, &
But these differential cocfficients wee equal to cach other

(Art. 41); hence, the second members of the equations
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arc cqual, and since the cocflicients of the scries are
independent of y, and the cquality exists whatever be the
value of 7, it follows that the corresponding terms in each
series will contain like powers ol y, and that the coef-
ficients of y in these terms will be equal (Alg. Axt. 208).
Heuce,

a—1:=20, b—1=ua, c—1=1b, &c,

and conseqiently

a=1, b9, c--3, &c.;
and comparing the cocllicients, we find

3 [
(IA (O - 1 (/]) ])A 1 7}

= () TR
Lo’ 2 dr 3 da

And since we have made
I (x) = A =1, and  Fle 4 y) ==,

we shall have

du u A
- — (- ——— e ——
A=w B ’ 1.2 da?’ 1.2.3 da

dx
and consequently,

3

du oy My L e

(g, 1 IR ST T .
=+ o Y da® 1.2 dat 1.2.3

43. 'This theorcm gives the following development for

the function
W= (z+y),

" du - d*u —
u=a" —J‘;znm ! ,d;z,.ff'n(n—l)x v &e.:
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hence,

—1
u.—('f"{ _/)"_'(1-' *‘nl,'"—l/.*_w(“ ~ ) n—flyz

“("—'1)(” vﬁ_}a‘n~3yﬂ+’ &e.
2 3 ’
44. The theorem of Taylor may also be applied to the
development of the second state of any func tion of the

formn

w = I'(x),

when 2 receives an arbiteary inerement fy and becomes
o+ h. For, if we substilate A for y, we have
et L P dhe N ,
W o Ve e e &c.;
. dat 1 dat 1.2.3
henee, the difference hetween the two states of the func-

tion 1s

v fl—”/l ¥ (/;/,i“" W n P h" * &,
e da L2 dat y N
i which the difference is expressed in terms ol the
differential coeflicients and the ascending powers of the
merement,
I we now suppose oto diminish continually, the sign of

e Himit of the series will depend on tha of the Orst term

L N . . . .. I
EZh, orif hoix opositive, on that of the cocflicient ¢
da o
For, by dividing by A, we have
wo—u du | o h AT y
- e — e, &
h do o odat 102 det 1,203 b ’
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and by passing to the limit

hence, when a series is cxpressed in the powers of a
variable which we suppose o be continually duninished,
the sign of the limit of the series will depend on the sign
of the term which contains the lowest power of the variable.

45. Remark. 'T'he theorem of Taylor has heen demon-

strated under the supposition, that the Sorm of the function
u, - 1"(*/"‘ ’*‘ .1/))

is independent of the particalar values which may be
attributed to cither of the variables @ or y. Henee, when

we make y == 0, and obtain
1)y =w;

this function of @ ought to preserve the sanwe forim as
F(r+y); clse there would be values of @ i one of tlie
functions,

w = a4 v), = I'(x),

which would not he found in the other, and consequently
some of the valines of @ would be made to disappear when
a particular value is assighed oy, which is entirely con-
trary 1o the supposition.

If the function be of the form

Web4 Va—x+ y,‘
we shall have

u=>0+4 Va—a.
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If we now make x==«, we shall have
w=>0+ \/y_, and u="o,

in which we sce, that @/ and  are expressed under dif-
ferent forms; and hence, the particular value of y=20
changes the form of the function, which Is contrary to the
hypothesis of Taylor’s theorem. This purticular case is
therefore not included in the theorem of Taylor.

46. 1f the function is of the form

w

{« 4 logy),
when we make y=:0, we have
w==t: o,

according as the hase of the system of logarithms 1s less
or greater than unity (Alg. Avte 247 and 248).

Or, if we have

¥ =2t cosee y, or W s focoly,
we shadl have for 0
th =,

i all of which cases the fonn of the function s changed
by making y 0.

Henee, there are two classes of cases 1o which the
theorem of ‘Tayvlor does not apply.

Ist. For any value of o which being substituted for @
under a radical, causes the radical to disappear 1in

Flay-u, and notin #Ge 4oy) ol

2d. Por every relation between ar and y i which if we
make y =0, we bl F(r) o

-

J
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47, If we have a function of the form

w = bt ‘/‘7—;7\77’

¢ differential coef-

in which =z is a whole number, all i

ficients for @ =« will become infinite.  Yor, we have

1
w=b p Va—wzb (e — x)",

hence,
du 1 1

de oot
du n (1 —x) "

e (1:71) B

T W
o " (-~ x) "
&ec. &e.

al, of which become infinite when we make 2= d.

Moaclawrin's "Theorene.

48. MaCLAULIN'S Tarorey explains the method of

developing into series any function of w single variable.

Lt us suppose the funetion o he of the form
T DR

1t is l,];li“ that the value ol F(a) must be ('X])]'(fHS(‘.(l n

terms of @, and of the constants which enter imto [(2).

Let us therefore assume
voem A Bat L O DAt &e.,

aecording to the ascend-

in which the terms are e
D, &c., ure

il’lg pOWCI‘S of &y and \\‘l\i('ll A, I)), (/‘,
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independent of @, and dependent on the constants which
enter Into 17(a).

Tt is now required to find such values for the exponents
¢, b, ¢, &c., and the cocflicients A, B, €, D, &c., as
shall render the development true for all possible values
which may be attributed 10 .

I we make 2 =0, 2 takes that value which the F(r)
asswmes under this supposition, and i we designate that

value hy (7 we shall have
I/ - A.

The first differential cocflicient. 1s

d - oy e
o aB3at =" 4 O 4 oD’ T &,

da

and sinee this does not necessanly become 0 when we

make @ -= 0, it lollows that there must he one term in the

b

sccond member of the form 2" hence,
a—1=0, or a=1;
and making x =0, we have

du

- —=B.
da

L4 4l - . TN -

T'he sccond differential cocllicient 1s

d*u
da

=b(b—1)Cr" ™ 4 c(c—1)Y Dz 4 &c.;

but since the second differential cocflicient does not neces-
sarily become 0, when 2 =0, we have

b—2=0, or b=—=2:
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hence, by making a0 -0, we have

dPu 1

CUE

o u

dat )

VN or

We may prove in a similar manner that

c==3 and I):[/J”, b &e.
dat 1oy
[f then we desionate by 7 what the function hecones
when we ke o -0, and by {7, (U7 &, whad
the successive differentinl coeflicients hecome under the
same stpposition, we shall have
i

Pl b Ve U700 07 R

1.2 .2,

49. The theorem of  Maclaurin may be deduced nmme-
diately from that of Taylor.
In the developuient

lu eyt Ay
o e R A
W=t 4/‘:"1/ et 1.2 dat 1023 Foaes

du 7 = &

the cocllicients  w, - - " .
x da”
are functions of @, and also dependent on the constants
which enter into F(e + i)
I we make @ -=0, the Flr+ y) hecomes F(y), and
each of the differential coet
will depend only on the constants which

licients being thus made inde-

pendent of o,
enter into F(r -k y), and which also enter into F(y).

Hence, if we designate by

U, U/, U”, UW, U////’ &C.,
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the values which the coefficients assume under this

hypothesis, we shall have

3 4
e 7 7 _J Y v Y y
Fy)=U+Uy+ U {5+ U gt Ulgggt&e

50. If we take a function of the form

u=(a+ x)

we shall have

gy =n(a+2)""

dx
d? U _ n—3
- n(n—1)(a+ )
da?
&c. = &ec.

which become, when we make a =0,

U=gqg", U=mna""', U'=n(n-1)a""? &ec.;
hence,

(¢+a)'=d"+na""z+ 71(]; = 2 212 4 &e.

51. Remark 1. "The theorem of Maclaurin has been
demonstrated under the supposition that the F(x) reduces
to a finite quantity when we make #=0. The case,
therefore, is excluded in which 2 = 0 renders the function
infinite. Thus, if we have

u=cosw, u=cosecw, or u=logu,

and make 2=0, we find %= ®; hence, neither of these

functions can be developed by the theorem of Maclaurin.
5
J
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Remark 2. We have already seen (Art. 45.), that the
theorem of Taylor does not apply to those  cases 1o
which the form of the function is changed by attributing
a particular value 1o one of the variables ; the theorem
therefore fuils for particular vulues, but Is true for all
others, and hence, the general development never fails.

n the theorem ol Maclaurin the failure arises from the
form of the function : hence, it is the gencral development

which fails, and with 1t, all the particular cases.

EXAMPLES.

1. Develop into a serics the function
1
e N
- - X
= Vit = a(l -+ —7) .
o
2. Develop mto & series the function
2
S, k] AN
3 P oy - WX
w= V(& — ) :u’(l — —7> .
«*
3. Develop into a series the function
1

—1
U= :a"'(l—{»»m- .
a-tx 173

4. Develop into a ceries the function

'
)

== 'f","::a_‘(l - il‘_‘> .
a
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CHAPTER I1I.

Of Transcendental Functions.
52. If we have an cquation of the form
U = (1,‘,

in which @ is constant, it is plain that z will be a function
of x; and if « be made the base of a system of logarithms,
2 will be the logarithm of the number # (Alg. Art, 240).
When the variable and function are thus related to cach
other, 1 is suid to be an ewponential or logarithmic func-
tion of x.

53. The functions expressed by the equations
u=sinx, uU=cosx w--Lngar, u=cotxr, &,

are called circulur functions.

The logarithmic and cireular functions are generally
called transcendental functions, because the relation be-
tween the function and variable is not determined by the
ordinary operations of Algebra.

Differentiation of Logarithmic Functions.

54. Let us resume the function

U -—=d".
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If we giv;e to  an increment %, we have
ul — al'+ 13
and W —u=a"*"—a"=d(d—1)

In order to develop @”, let us make @ —14b, we shall
then have '

h(h_l)b,+h(h 1)(h—-2)b3+ %

=(1+b)'= 1+—b+ =
hence,

b (h=1) 0V (h——l)(h—2)b
el —T 3 .
(1+ s Bel) 1o okl 3+&°‘)’
from which we see, that the coefficients of the first power
of h will be
y . P
(e 7 rgmied
replacing b by its value @ —1, and passing to the limit,
we obtain

du da* §=1 (aS1P(a=1) :
(1" Fe g — &e.);

or if we make

a—1 (a—l)’ a—l)’ &c.,
1 L R e

da” ’_ )
- = ka®, oOr do® = ka'dx ;

in which % is dependent on a.
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The successive differential coeflicients are readily found.

For we have
da*

— (111\
dx

d (@: = da'k = a*k*dx ;

da /

d*a” S
hence, Rl ) of

da*

d*a”

- =dk®

(l-l,") .

&c. &ec.

d"a* ¢

—_—= * k",

da”

55. Tt is now proposed to find the relation which exists
between @ and k. For this purpose, let us employ the
formula of Maclaurin,

x°

u=F@=U+UE 0Ly Z | &,

If in the function
U= a’,

and the successive differential coefficients before found,
we make x =0, we have

=1, U =% U' =R, U =1% %03
hence,
I Ia?

piRe At X
If we now make x = -Ilc—, we shall have
a 1 1 1
ot =14 — 4 —
+1+1'2+ 23+&C"
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designating by ¢ the second member of the equation, and
cmploying twelve terms of the series, we shall find
oo 2T182E18

1

henee, @& e, therefore o= ¢

v

But, 27182808 is the base of the N
250); henes, the constanl r/'u,u,nll'/]/

upnri:m syslen of

Jogarithins (Alg. Art.
L v the Naperian Jowarithm of

By resuming the result obtained Art. b1,

di = atkday

we sce that the (/f:[/'t:rruliu[ of u quantity obtatned Ly
salsing A conslunl o @ power
ponent, s t’quu[ {o the 4///4//1//!_:/ wself inlo the Naperiin
of the constunt, tnfo the r//;[/'t'rrfu,/ml of the

denated by« pertable o=

logarithomn
I’J'/J!JH!’HK.
5. I now we ke the Jogarithnes, in any systent, ol

both members of the l:qu:mnn

K
[ I

we shall have

la
Kle = lo, or k==
le
whence,

la
dut = ka'de = Tu,’ d ;
-

€

or by recollecting that

= a’,
we have
du _la ..
de " le
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or, if we regard @ as the function, and # as the variable,
we have (Art. 34),

de e 1

du’ du @
Let us now suppose ¢ to be the base of a system of
loarithis. We shall then have a o= the logarithm  of
uy =1, and le == the modulus of the system (Alg.

At 255); and the equation will become

du
d(lu) = le—
(lw) e
that is, the differentiol of the logavithm of a quantity is
cquad Lo the modulus of the system into the differential of
the qirantity divided by the quantity iself.

57. I we suppose e the base of the Naperian
systeny, and - employ the nsual characteristic 1o desig-

uite the Naperian logarithim, we shall have

Aty "

"

il as, the defferentiol of the Napevian logarithm of «
qreartily s equal o the differentiol of the quantity divided
by the quantity itself.

The Tast property iight have been dedueed from the
preceding avticle by observing that the modulus of the
Napertan systen s equal 10 unily,

A, The theorein of Machuwin alfords an casy method
of finding a logiwrithmic series Irom which a table of
logarithms may be computed, 1 we have a funetion of
the forn,

[ R I“((!,‘.) R /Jf,
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the devclopment cannot be

we have already seen that
infinite when =0 (Art. 51.)

made, since F(x) becomes
But if we make
w=F@)y=10+ x),

¢ infinite when 2=0; and

the function will not becom
hence the development may be made.
The theorem of Maclaurin gives
xr '],'2 .'F,'H
w=F@)=U A AR | UL e
: (@) + Uy el WA
! If we designate the modulus of the system of the loga-
' rithms by A, w¢ shall have
I 1
Gl A — —== AL+ a')“",
e 14
) d*u i .
- et oA = AQ a)?
d? (L) I+ )

B
(l 12 1 - ’!’"—’, - 2/1 (1 *_ J‘) 4

OX
“

dat (14

1f we now make a=0, W¢ have
U=09, =4, U — A, s 2A, &oed
hence,
o . 2 ot
1+ a) s A (-”f - 15 4- —{ — ;1- 1 = — k\i(:_)

y(:nn\'vrg;in;;‘, except I

s 18 not suflicientd
I'o render the

This series
s very small fraction.

the case when @
te — a for a:

crging, substitu

e @t at ab
)= - o &e.
1 —a)=A(—2 s c.)

<)
~

{
geries hore cony \Nl‘.“l(',ll have
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and by subtracting the last series from the first, we obtain

1 x 2@ 2 ;
114+ 2) =11 —a)=1(105) =24 (T+5+5+ &)
If we make

14 g PN
1__i_.l—’,-—— we have @ S

and by observing that

(1+2) = z(’f-}*t—?)z I(n +2) —In,

we have

6
g +z)——ln:2A S—z—i—z J<2n+ ) ‘)7[122) }_&CE\

from which we can find the logarithm of n + 2 when the
logarithm of » is known. This series is similar to that
found in Algebra, Axt. 253.

If we make n=1, and z=1, we have {1 =0, and

b i 1( zs‘ __:‘3,) + &,c.)

If we make the modulus 4 =1, the logarithm will be
taken in the Naperian system, and we shall have

U2 =0.693147180,
U2 =104=1.386294360;

and by making z=4, and n=1, we have

and 2lI'b =110 = 2.302585093.
6
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If we now suppose the first logarithms to have been
taken in the common system, of which the base is 10, we
shall have, by recollecting, that the logarithms of the same
number taken in two different systems are to each other
as their moduli (Alg. Art. 250),

110 : 710 :: 4 : 1,
or, 1 : 2302585098 :: 4 : 1 g
1
h A=—0 =, 3
whence, 230258500 0.434284482

Remark. To avoid the inconvenience of writing the
modulus at each differentiation (Art. 56), the Naperian
logarithms are generally used in the calculus, and when
we wish to pass to the common system, we have merely
to multiply by the modulus of the common system. We
may then omit the accent, and designate the Naperian
logarithm by /.

59. Let us now apply these principles in differentiating
logarithmic functions.

J take the functi u={—).
1. Let us take the function (\/az-{- )

&

Make - f— :/?4:8’
dz
and we shall have du = 3,
a*da

Vi+a2? a*dx

dz Va*+ o —

but  dz=

.
’

2] o)

@+ =(a’+.z")
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a*dx

Whence, du = m——) .

v1i4+2+ Vi—z

] e
2. Take thefunctlon u [\/l+w—\/l—x

and make +/1+a+ V1—2=Y, Vita—1—x=2

which gives

u=l(lz/—)=ly—lz, and du__%f._(z

-~

Y]
But we have

d%___££_=_:éi(¢ﬁ$:¢t3y

“eVita 21/1—.70 2vVi—a?

_ zde
2\/1——56‘,
da da:
dz= —_ wz(1/1+w+y/l—x)
2 yda‘
2\/1—.1"'
Whence,
f_li_g zdx yda
y z  eyVi—a& 2:V1-2
e
2yzV1— 2 : By

and observing that *+ 2°=4 and yz =2,

we have du'= —
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8 u=i Vit du = da .
(o4 VIF2), Vite

SR v 1 s
‘? Tix 4. u=7-:—_l_l(x1/__1+ 1/1_:;.2), du=‘/ma_.

1/ Vit +a die
5. du = ———.
1/1 +—a. 1+ a*
VaTEy Vs | i
6. u=1l =1
[‘\/ to—-Va—u - Vi —o
L 60. Let us suppose that we have a function of the form
' u = (lz)".
7= U
Make Iz =z, and we have ry
. n~ --:.-.—‘
u=2" du = nz""'dz, {

and substituting for z and dz their values,
. -
| d(lay= .E%’.’l—'dm.

61. Let us suppose that we have

u=1(lz).

Make Iz =z, and we shall have,

u=lz, du=d-£-, dz=d-£;
z x
hence, - - h =%
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62. The rules for the differentiation of logarithmic func-
tions are advantageously applied in the differentiation of
complicated exponential functions.

1. Let us suppose that we have a function of the form
U =25

in which z and y are both variables.
If we take the logarithms of both members, we have

7 7 lu=ylz;
-  du dz *
l ) — Y—_2
ience, = (ly lz + Y s
or, du = ulzdy + vy %,

or by substituting for « its value
du = d2¥ = 2"lzdy + y2*~"dz.

Hence, the differential of a function which is equal to
a variable root raised to a power denoted by a variable
exponent, is equal to the sum of the differentials which
arise, by differentiating, first under the supposition
that the root remains constant, and then under the sup-

position that the exponent remains gonstant (Arts. 55,
and 32).

2. Let the function be of the form
. K = ab"_

\ Make, "=y, and we shall then have (Art. 55),

P u=a’, du=a'tady ; but dy=U"lbdz,
‘ hence, du = d blalbda,
6*

L—i——-—————‘
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3. Let us take as a last example

¢

U =2,
in which z, ¢, and s, we variables.
Make, =y, Wt ¢hall then have

u=2z du === lzdy + y2* 7 dz

But dy = Fltds 4 sttt ;
du=2"lz(t'ltds + sttty - vz dz,

du=17 t(ltlzds + ill’icﬁ—y (Iz

hence,

Differentiation of Curcular Functions.

t find the differential of the sine of an

63. Let us firs
1l asswne the formulas (Tng.

arc. For this purpose we wi
Art. XTX),

qing cosb + sin beosa

smete

k]

R

sin (¢ + 0) ==

sing cosh - sm heosa

sin(a—0)=———"p " °
R

If we subtract the second cquation from the first,

asinbe osd

R

and if we make o+ o by, and @ — b =, we shall

MNUES by — sin (0 —b)—=

have
1
2s1in —)—h(i()ﬁ (m 4 .}L_ /L>

—"" s

sin (¢ + h) —sing = ——"""p
I
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and dividing both members by h,

: ]
. . Osin. - hocos (; 4, j,)
sin{x+ I — sinw o o

h R '
; 1
s h (TUS(:!,‘ 1- ‘)—//>
ToyTTTTTR T
,,], L v
2

If we now pass 1o the limit, the sec ond factor of the

) X cos
second member of the equation will hecome - -

R
1
sin— h
In relation to the first factor —— s limit will be unity.
—h
2
F . R sina | sine cosa
or ANg g ==~ whence - e e
’ 2 cosa tga R

Now, since an arc is greater than its sine and less than
its tangent®

st sineg _ sina
U2y, wad o e :
o @€ tangu

¢ Theare DB s greater than a straight line

(5
drawn from 1) to B, and consequently greater DA
than the sine DE drawn perpendienlar to A B. A |

. N 1 . / N
The arca of the sector JABD  1sequal to % \1

P i

é AB X BD, and the area of the triangle ABC e \
1 . it . N

18 equal to )./III K BC. But the scctor is less A I

than the triangle being contained within it: henee,
1 . 1
i B X BD S K B

consequently, BD < BC.
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hence, the ratio of the sine divided by the arc is nearer
unity than that of the sine divided by the tangent. But
when we pass to the limit, by making the arc equal to 0,
the sine divided by the tangent being equal to the cosine
divided by the radius, is equal to unity: hence the lvmat
of the ratio of the sine and arc, is unity.

When therefore we pass to the limit by making ~=0,
we find

dsinz _cosa |

de R’

duinly 224,

hence,

64. Having found the differential of the sine, the diffe-
rentials of the other functions of the arc are readily de-
duced from it.

cosz = 8in(90° — ), dcosa = dsin(90° — a),
and by the last article,

dsin(90° — z) = -%cos(90° — a)d(90° — ),

=— %cos (90° — a)da :

hence, deosa = — ___ism:z'd.z';

R
the differential of the cosine in terms of the arc being
negative, as it should be, since the cosine and arc are
decreasing functions of each other (Art. 31.)
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65. Since the versed sine of an arc is equal to radius
minus the cosine, we have

sin adx
d ver-sinz = d(R — cos x) = g
R
: R sin 30
66. Since tang o =————, we have (Art. 30),
cos @

R cosad sine — R sinad cosa

dtang 2 = :
g cos’x .
2 i na N y. :
e (cos®z + .m ) ; ey o
cos’x e v
’ but cos’z + sin’r = R?:
Jd
I " Rz
l ience, ¢ tangay = T
cos’x
: R?
67. Since coty = ———, we have
tang @
R*d tang o Rida
dcoty = — - g = — =3
tang’a tangx cos’a
. N
R? sin*x
but! tangzx = S e H
cos’x
:
R?dzx
hence, deotr = — ———;
sin“z

which is negative, as it should be, since the cotangent is a
decreasing function of the arc.

TR TR R
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i R?

68. Since secax=- we have

cosa’

R?*d cosa R sinxzdzx W~
dsecr = — 3 = Z g ﬂ e J
cos’x cos‘x e y
Lag Y Lo
R sinx o
| but, = tangz, and = seca;
cosx cosa
‘ secax tangxdx
| hence, d secr = SR
| =
! R?
69. Since cosecx =———: we have
sin@
R sinz R cosxdx
deosec 2= ————=— —7 ;
sin“x sin“x
: cosecx cotedx
hence, d coseca = — o .

70. If we make R=1, Arts. 63, 64, 65, 66, 67,
will give,

d sinz = coszdx (1)
d cosx = — sinzdx (2),
d ver sinz = sinzdx (8),
d tangw = o (4),
dcotr=—— o (5).

The differential values of the secant and cosecant are -
omitted, being of little practical use.
~ 71. In treating the circular functions, it is found to be
most convenient to regard the arc as the function, and the
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sine, cosine, versed-sine, tangent, or cotangent, as the
variable, "If we ‘designate the variable by u, we shall
have in (Art. 68) sinz=wu, and

/ 7

Rdu  Rdu
cosr  VRE_2

If we make cosz=wu, we have (Art. 64),

Rdu Rdu

d = - . R ey ®
e sin @ vVi—i

If we make ver-sing — u, we have (Art. 65),

Rdy
dr = Ji—
sina
. i e
But, smx= v/R*_ cos’s, and cosit—R— —U,
therefore, cos’2 = R?— 2 Ru + u?,
hence, SINZ = v/ Ru — 1%,
Rdu
and consequently, de = — =
2Ry — u*
If we make tang @ = u, we have (Art. 66)
doo— OS2 du :
Y T g,
cosx iy cos’s R? %
but = » hence | ——=_—_ _ .. 0w
seca R sechy R”—{—tang”.r’
2
du
hence, a do = R

Ry
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’ Now, if we make R=1, the four last formulas
! | become :
; ' du du 0 A~
‘ J/‘/‘/'- o de= do = — ——— a
: - vi— : 1—-v
Pl
: du du
de = —— de=—"7")
j Gt vVou—u T+’
] " }j ‘,Ar!, pad ”
and these formulas being of frequent 1se, should be care-

fully committed to memory-:

#9. The following notation hi

into the differential calculus, an
ans of its functions.

as recently been introduced
d it enables us to designate

an arc by me

gin—'u = the arc of which u 18 the sine,

cos—'u = the arc of which u is the cosine,

tang~'u = the arc of which u is the tangent,

&ec. &e. &ec.

1f, for example, We have
du

z—=sin"'y, then, do = ————+
Vi@

#3. We shall now add a few examples.
1. Let us take a function of the form

2 = cosa™”.

Make cosz =2, and sine=1Y;

then, u—2, and (Art 62);

du=2"lzdy + yz'~da:
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also, dz = —sinwdr, and dy=cosxdax:
hence, du=2z¥ (lz dy + % dz ),
nZ

: sin? x
= cosx““’(lcosw Cos & — )dx.

cosx

2. Differentiate the function
C mdu .
2 = sin~" mu, do = -

Vi

3. Differentiate the function

@ cos_'(u V1= lﬁ)

(— 14+ 20*)du
\/( Lt 4 ) (1 uz)‘

g =

4. Differentiate the function

u 2du
o= tmgT = dw = :—-—2-,
<2 14 u

5. Diflerentiate the funetion

6. Diflerentiate the function

, du
y Ve

_, ydae — vd
u-ctang™! Y Y /.

74 We are enabled by means of Machunin’s theorem

and the differentials of the cirealur fiuctions, to find the

7
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value of the principal functions
arc itsclf.

Lect U= [“(.‘l.‘) R
du cos *u .
— = CO03 sz == SN
dx ’ du >

d*u . o™
= siuxr -
(1.’1,‘4 ’ I/J,'

1{ we now render the differen

of x, by making @ =0, w¢ hit

U= 0, U =1, v

hence, sinmw=— . — -
1 1.2.3

75. 'To develop the cosine in
1t

oy THE

of an arc in terms of the

e then,
U
» Lz — COSD
Ty ?
da?
t
-4 cos.

tinl coeflicients im]v])(tndcnt
ve (Art. 49),

o0, U —1,

terms of the are, make

w o i)y ceosag then,

du . dn i .
= — s ) CcoR.T - SRR
dx ! 4/.:")’ (/.1"

i o .

——— Tz ORI — Wy,

da? o

and rendering the corflicionts b
I/--1, [, [

e,

hence, cose=1— -+

e l. l"/// 0

wlependent of o, we have

k]

TR R
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The last two formulas are very convenient in calculating
the trigonometrical tables, and when the arc is small the
series will converge rapidly. Having found the sine and
cosine, the other functions of the arc may readily be
calculated from them.

76. In the two last series we have found the values of
the functions, sine and cosine, in terms of the arc. We
may, if we please, find the value of the arc in terms of
any of its functions.

77. The differential coefficient of the arc in terms of
its sine, is (Art. 71),
da 1

Aalert

Jaz\/l—u

developing by the binomial theorem, we find

dx 1

e & ¢ DI .08
du~1+2u+2.4“'+

2.4.6

u® 4 &e.

In passing from the function to the differential coeffi-
cient, the exponent of the variable in each term which
contains it, is diminished by unity; and hence, the series
which expresses the value of 2 in terms of w, will contain
the uneven powers of u, or will be of the form

@ = Au + Bu® + Cu® + Du" + &e.;

and the differential coefficient is

Z_‘:zA+3Bu2+5Cu‘+7Du“+ &ec.
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f

But since the differential coefficients are equal to each
other, we find, by comparing the series,

1 1.3 1.8.5
A=1, B=gg C=ga17% D=3361’
hence,
e L w 1.8u , 1.83.6 4
itanliet BT s T WRCE o/
If we take the arc of 30°, of which the sine is —;-
(Trig. Art. XV), we ghall have
1 1.3 1.8.5
(o e 49
arc 30° = 2+2.3.23+2.4.5.2°+ TE67. 7 i

and by multiplying both members of the equation by 6,
we obtain the length of the semi-circumference to the
“adius unity.

78, To express the arc in terms of its tangent, we have
(Axt. 71),

da 1 ~1
—_—= = u?
e e

which gives

de _,_ o2 ¢
dT[—l u’+u‘ “+&C.,

hence the function must be of the form

»= Au+ Bv’ + Cu® + D',

and consequently

‘;.L;=A+sw+50u‘+7w;
“
qab
: -/ / - (20
/,(] / ,V
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and by comparing the series, and substituting for 4, B, C,
&ec., their values, we find

v W

u'l
o= tangtu=1 — o+ ¢ — =+ &

If we make o= 45°, u will be equal to 1; hence,
1 | 1
arc 459 =1 — — 4 — — —+ &ec.
arc 4o 3 - 5 7 +

But this series is not sufficiently convergent to be used
for computing the value of the arc. To find the value
of the arc in a more converging series, we employ the
following property of two arcs, viz. :

! ol |
Four times the arc whose tangent is —, exceeds the
5]

1
arc of 45° by the arc whose tangent is ——*. :
| 9 239 X
/1) 1
F 4 * Let a represent the arc whose tangent is ™ Then (Trig. Art.
suk b XXV, A=
: R 2tanga 5 ﬁ)ﬂ | od
b ¢ o L tung®e 12 ", &L ) !
/Q " tang 4o 2tang 2¢ 120 2 g .
/2 7 = T—tang2a 119 = 2457 3
The last number being greater than unity, shows that the arc 44 *!'
ceeds 45°. Making Z5
2 it 45° =B,
rs
W the difference, 4a-—45°=— B==b, will have for its tangent
e tang JA— tang B 1
tang b s tang (A= B) m it TN L en )
Q24 g ang ( P 1-tangdtang B ~ 239 ’

>

hence, four times the arc whose tangent is —;, exceeds the arc of 45° by an

arc whose tangent is

‘ 239

- ] ) 1) l

. ) / v / . . v,""' S v
S R — — F ’)

‘} "

< 4 /) b g 4 194
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Bk boo Boise At pothE
- g = =5~ 3.5 5.6 7+ &
ol ok ot AT Wy A
339 =230 3(209) | 5(239Y T@aey T
hence,
§=" )
sl —+—s-7=+
o (51 3515.5 717’) :
7 (57'39 ~ 3(239y + 5(230y ~ 7(239Y +)

Multiplying by 4, we find the semi-circumference

= 8.141592653.
s ,
d .21 /  ™ T /
/ wdt Z/‘- -
4 ( A ' :{{ v LAt ([
' v 24
( o W A (’/ 1
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4 i
CHAPTER 1V.

Development of any Function of two Variables
—Differential of a Function of any number
of Variables—Implicit Functions—Differential
Equations of Curves—Of Vanishing Fractions.

79. We have expléir;ed in Taylor’s theorem the method
of developing into a series any function of the sum or dif-
ference of two variables.

We now propose to give a general theorem of which
that is a particular case, viz :

To develop into a series any function of two or more |
variables, and find the differential of the function. |

80. Before making the development it will be necessary
to explain a notation which has not yet been used.

If we have a function of two variables, as

u= F(x,vy),

we may suppose one to remain constant and differentiate
the function with respect to the other.

Thus, if we suppose y to remain constant, and z to
vary, the differential coeflicient will be

du S
"E‘—IV(”’.’/)’ (1),

f”‘
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and if we supposc & 10 reanain constant and ¥ to vary,
the differential coeflicient will be
du
dy

The differential coeflicients which are obtained under

(). (2)

these 51,1})1)05'11’10115, are called partial zl:;[/'zzren[iul coef-
fictents. The first is the partial dilferential cocllicient
with respect 1o w, and the second with respect 1oy

&1. Tf we multiply both members of equation (1) by

dx, and both members of equation (2) by dy, we obtain

((% dr = F (2,y)d=, and (5,3 dy == 1" (&, )y
The expressions,
dut du
—dr, —dy,
far dy

are called partial differentials ; the first a partial diffe-
rential with respeet oox, and the second a partial diffe-
rential with respect oy henee,

A partial differential corfficient is the differential co-
efficient of Sunction of two or more variables, wnder
the supposttion that only vne of them has changed s
value : and,

A partial differential ts the differentia of « funclion
of twu or more variables, wider the supposition that only
one of them has changed s valure,

w2, 1F we diflerenuate equation (1) under the suppo-

sition thitt @ remains constant and ¥ varies, W shall have

Ty
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and since x and dx are constant

d(:ﬁ/) i (/(1///)

e da’

which we designate by

Pu
i "
d*u v
hence, e = DY ey ),
dady

The first member of this equation expresses that the
function u has been dilferentinted twice, onee with respect
1o &, and onee with respect 1o y.

If we differentiate again, regarding @ as the variable,
we obtain

P

fniaiod l’,]v K ," N
datdy (1)

which expresses that the function has been differentiated
twice with respeet 1o 2 and once with respect 1o y. And
generally

P

dat oy’

indicates that the function w has been differentided » 4 m
times, # times with respect to e, and e times with respeet
o y.
83. Resuming the function
w = I'(a,y),
if we suppose y 1o remain constant, and give to @ an arbi-

trary increment £, we shall have from the theorem of Taylor,

e dPu 1
F(x+hy)=u+ Tt TR 8
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du d*u M

in which, T N
Tode’ oda’ da’

are functions of @ and ¥, und dependent on the constants
which enter the £7(a, y).
If we now attribute to y an ncrement &, the function
u, which depends on y, will become
du, dE K dhe W

— k- Y e - 3
u+([yL * dyt 1.2 F (/;E’ 1.2.3 td&e

. du .
and the function — will become

dx

it Pk AT & e 3
— e e o S &
dur r durdy 1 F dady 1.2 r daody’ 1.2.3 &

. . u .
and the function -+ 5, will become

da

o ok e K e I

S S R SRR e s -— 4 &ec.
da* + datdy 1 + dardy* 1.2 f dody? 1.2.3 + ?
. i .
and the function — will become
s
L ' I3 u 2 i k3 + &c.'

ot aedy TV T I T
&ec. &c. &ec. &e.

Substituting these values in the development of

F(x+h y)
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and arranging the terms, we have

de k. Lu B Lo B

—_— = e 4 &,
dy 1 dy* 1.2 dy'l1.2.3

Fethy+k)y=u+

du h dhu Wk TETIN Y

— e &e.,
+d:c 1 dadyll  dedy*1.2 €
n _(/'li ],'u, ([IIL ek &,
da? 1.2 da”dy 1.2
3, 3
*u I + &

da? 123

which is the general development of a function of two
variables, in terms of the increments and diflerential co-
cflicients.

N4 10 we now trmspose 1= (2, y) Into the first

member, and puass to the limit, we find
li du
{ I'v",‘ s /',:‘:" [ ) .
LI, ) )~ du A { t/y{"/

The differential of 17 (., y) - e, which is obtained under
the supposition that both the variables have changed their

values, s called the tofal differential of the function.
85, If we have a Tunetion of three vartables, as
w o I (w, y, 2),

and suppose one of them, as z, v remain constant, and

g

merements Zoand & 1o be antributed o the other wo, the
development of 17 (a |- oy 4ohy2) will be of the sune
form as the development of - # (e 1= 4, kY bt e oand

all the differential coefiicients will he (anctions of =z,
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If then an increment 1 be attributed to 2, there will be
four terms of the development of the form

du du du
u, E{t—h’ E!_/ y —d—;l-

If u were a function of four variables, as
u=F(2,1 %)
there would be five terms of the form

oy By B

dx’ dy "’ dz’ ds 7
and a new variable introduced into the function, would
introduce a term containing the first power of its increment
into the development.

1f we transpose ¥ into the first member, and pass 10
the limit, we shall have

) =%dac+ %dy +%‘dz,

and’

du du du du
d[F(-‘{,!I_,z:S)] = a‘md"" L @dy 7 a;dz ¢ ?l:'ds’
from which we may conclude that, the total differential
of @ function of any number of variables is equal to the
sum of the partial differentials.

86, The rule demonstrated in the last article is alone
sufficient for the differentiation of every algebraic function.
1. Let u=2+y—%; then

& gy =pads, 1t partial differential;
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g-tfdy =3y*dy, 2d partial differential ;
Yy
d_i‘dz P dz, 3d “ “
dz

hence, du=R2adx + 3y*dy — dz.

2. Let u=way; then,

(Jlf—z doe = yda,
du
—dy =
ay y = ady

hence, du = ydx + xdy.

3. Let u=o"y"; then,

Tu
:/—:[ dw.= ma" = yrda,
- by = nylvla"d h
e dy = 1 mdy - .
% y = ny"~a"dy : ence,

du =ma""'y"dz + ny*~" o dy = &~ y" = (myda + nady).

4. Let u=-" then,
1
d—l!(l' i (_li"‘
¥ Y
o
dy s %
hence a0 L yda — ady
) Iy — T

8
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1
5. Let = r(l—: —ay(a* +y*) *; then,
Vit + ¥
du ayxdx
——(l;l,‘: —_— =
dx Yy o
(a+ )"
gy = ey
@5 (a4 ]/2):‘- (2 + y"t)r"b
ayxde — axtdy
hence, du = — =TT

(" + 9
6. Let w=ayzt; then,

du = yztdr taztdy + aytlz + ayzdl.

7. Let u=— 29, then,
e
Dy =2vlzdy (Art. H5),
dy :
(!"l da =y 2z (Art. 32):
[R5 )
Lence, du =evlzdy oyt

Remark.  In chapter 11, the functions were supposed
10 d('p(:ml O 4 colnmou viviable, and the dilferentinds were
obtained under this ﬁ\ll;\)u\l“iull. W now see that the dif-
ferentials are obtained i the swme nnner, whoen the fune-
1lons are ill(l('l)itl\(l(’nl ol e other, and wnconnected with
a common variable.

&7 We have seen (Arto 249, it a function of a single

variable has but one differentind cod Micient of the first

order, one of the cecond, one of the third, &c.; whale
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function of two variables has two dillerential coeflicients
of the first order, a function of three variables, three; a
function of four variables, four; &e.

Tt is now proposed to find the suceessive differentials
of a function of two variables, and wso the successive
differential coellicients.

We have already found

u

{1[{’_/ / v - ——*(/I/

.. ol e .
Since "2 and M e lunctions of = and ¥, the
de cly

. . L e . .
differentialy f/’(lm, oo dy, must cach be differentiated
L (rl
with respect to both of the variables s; dw and dy being

supposed constant: henee,
li oM d’u
e o= di® - lod
‘ <(/1 ) dat " r[w:/_l/( e
e d*u d*u
1y ) =y lyda ;
‘ </ ‘ ‘I/> dy v (/_//4/.'1:( yeda;

and since 1the second differential of the function is bhut the

differential of the first differential, we have

2
d*u :(;[l‘;;(l.l +2 ’/ I1 (]l(/l/ 4 «7‘(/j

If we differentiate again, we have

dat da? dy‘-

d*u dhu o dPu datdy,
d(,ﬁd ) ” da? -

b

d(2 _(_’,',Iﬁd‘u],/) =9 ,»—_r/( ‘dy + .Z--m 7 (lxdy

(I(//
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d( ([j ) # d’ i Jj’d " —iL_t——(ly“ :
Iy dyd I

and consequently,

dlu

d = T et 3 7 w@d.l dy - §J j (l:dj + Afllll

It is very eiasy 1o find the subseguent ditTerentials, by
observing the analogy between the pmiml differentials ared
the texms of the developnent of 1 binomtal.

We also sce that, ¢ Sunction of two voriables hus o
p(/rfm/ differentiol cocfficients of the first order, three of
e sevond, four of the third, &c.

&R, There are sever al important resu Its which may be
deduced from thie genet ral development of the function of

two variables (At ~3).
1st. 3 we make @ —0, and y =0, and each of

the differential cocllicients will hecome constant, and we
shall have

it (III
Fh, k)_ll+ ((/1 ([l/ )

1 d*u . 1/:4
+ _11’1“ *‘z(/lll/}]-‘—{/j )

+ &c,

which is the developme nt of any function of two variables
in terms of their ascending POWers, and coellicients which

arc dependent on the constinits that enter the prmuuvc

funcuion.
ad. Tf, in the general development, we make y =10, and

k=0, we shall have
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du b dPe IE du /L3_~
Pldh=ut it aeie b e T3

which is the theorcin of "Paylor.

3d. If we make y =0, k=0, and =0, we have

du b dPa B LPu WP

Cde U de 12 ae

F(h) =+ S+ &e,

which is the theoremn of Maclaurin.

Implicit Funetions.

89. When the relation between a function and its
variable 1s expressed by an equation of the form

Y= F(a)

m which y is entirely disengaged from x, y has been
called - eaplicit, or eapressed function of a (Art. 5).
When y and @ are connected together by an equation of
the form

Fny) -0,

¥ has been called an tneplicit, or implied function of x
(Art. 5)
It is plain, that in every equation of the form
L°(e, ) == 0,

y must be a function of @, and & of 4. Tor, if the
equation were resolved with respect to either of them, the

value found would be expressed in terms of the other

variable and constant quantities.
5'
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g0, If in the equation

w=Fay)=0,
We suppose the variables @ and ¢ o change their values
in successtorn, any change cither noa or Y, will produce a
change n v hence, w is a funcuon of o and y when
they vary 1 suceession. The value, however which u
assumnes, when a or Y VArICs, will reduce 10 0 when
such a value be autributed to the other variable as will

satisfy the cquation
F(x,y)=0
Now the partial dillerential

du
Zdex.
da u

represents the limit of the change which takes place m the

function % under the supposition that 2 varies (Art. 81);

and the part'm! differential

du

~dy.
ll_l/{y

is the limt of the change which takes place in the function

w under the suppositinn that v varies.  But the change

which takes place in w when @ and ¥ both vary is O:

(/'f dr + :/];;([]/ = 0.

hence,
(e

91. In discussing the equation

Fa,y)= 0,
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it s often necessary to find the differential coeflicients of
one of the variables regarded as a function of the other,
and this may be done without resolving the cquation. For,

from the last article,

du dir -+ du dy=0;
du dy -
du | dudy 0-
on da dy de
i
hence, dy E— ﬂ
dx du
dy

Hence, the differcntial cocflicient of y resarded as a
Sunction of x, is equal to the ratio of the partial differen-
il coefficients of W rezurded as « function of 3, and u
regarded us a function of y, taken with a contrary sign.

Let us take, as an example, the equation of the cirele

Fle,yy=a* 4+ y* — R = 1 =04

1 du %
then, — 2z and — 2y

de ~Ts dly

hence, dy *

da” y
Although the differential coeflicient of the first order is
generally expressed in terms of 2 and yet y may he
eliminated by means of the cquation £'(e, ) = 0, and the
coeflicient treated as a function of @ alone.  In the circle,
we have

y= VIR 2,
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dy
hence, Y

dw

g2, Tf it be required 1o find the second differential
coeflicient, we have merely o differentiate the first diffe-
rential coefficient, regarded as (unction of @, and divide
the result by da. Phus, if we designate the first diffe-
rential coefbeient by p, the sccond by ¢, the third by
r, &c., we shall have
dp _

(]r/
de

q, =7, &ec.

do

93. To find the sccond  differential cocflicient in the

circle, we have

dy x
do Y ’
Iy — ydar + ady
l (—— psind e s
‘ <(L1f> ¥
dy
ey
hence, L7 = I
da? y*
Iy . x
and by substituting for Y its value — jL, we have
i 1/

(/7‘:1/_ ~:12 + :12

1/\1.'1 i l/"

1. Find the first differential coctlicient of y, in the

equation
y' - 2may + at -t = u=0,
(]ll, (/” 3] <
oy 4 2, fe = Ry — R%mx:
da : dy
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dy T 2y | 2w my — &
lienee, dy _ [ e | e |y
e [ Ry 2w | y-—mr

2. Find the first diflerential coeflicient of 4 in the
Cuation
Y b Loy b et a2 0,
dy

R Ll
dr

3. Find the first and second differential cocflicients of ,
it the equation

Y Bury -t 0

?
de q i L Saa
LR (7)) Byt — Jur
da 7 dy 4 ’
henee dy 3l - By wy ot
7 de BB —aa

For the second differential cocfficient, we have

o / R /
ay (:I/“ ~— wr) (uZ/ﬁ - 2;1') — (ery - a*) <:3_1/ :/l/ - a) .

/ 2
o

(4 wryt

o {
or, by substituting for s

it value, and redueing,
e

&y Loyt Gaaty? b Lyt | Qatey
di

(4" — tl.’:,')'i !

2y = Baay 4 a4 Ry |
- (1 — aw)' )

but from the given equation

y3 — Jury + 2" = 0.

&y 2’ ry
d (Y= ax)”

hence,
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Differentind Fequations of Curves.

94. The Differential Caleulus enibles us to free an
equation of its constints, and to find anew eqguation which
shall only involve the variables and their dilferentianls.

If, for example, we ke the equation of i straight line

Y — x4 b,

and differentiate it, we find

i
/ ==,
(/‘l,‘
and by differentiating again,
'y 0
dat T

The st equation is entirely illl]i‘i)l‘,l\(l(!ll\, of the values
of ¢ and b, and hence, is cequally ;1})})[1(:1[|»lc to every
straight line which ean he drawn in the plane of the co-
ordinate axes. It is called, the 4/{[/':5/‘«:11,11}1,[ l'([m(/i«m of
lines of the first order,

g5. If we take the cquiation of the cirele

ot ytz: 12,
and differentiate it, we find
ada 4 ydy = 0.

This equation is independent of the value of the radius
R, and hence it belongs cqually to every circle whose
centre is at the origin of co-ordinates.
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96. If the origin of co-ordinates be taken in the circum-
ference, the equation of the circle (An. Geom. Bk. I,
Prop. I, Sch. 3) is

¥y =2Rx —2*;

from which we find

2 P
er= YT,
.

and by differentiating,

0 — TRydy + wd) — (y* + o*)da
@ ’

or by reducing
(o — ) do - 22y dy = 0,

which is the differential equation of the circle when the
arioin of co-ordinates is in the circumference,
The Tast equation may be found in another manner.
I we differentiate the equation of the circle,
Y2 R — g?

I

we have, after dividing by 2
ydy = Ridar — woda ;

yiely | oada

hence, R
o

If this value of R be substituted ju the cquation of the
circle, we have

(Y | Qaydy 0

H

the same differential equntion s found by the first mel]

ol
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97. If we take the general cquation of lines of the
sccond order (An. Geom. Bk. VL. Prop. X1, Sch. 3),

yt = mx+ na?,
and differentiate it, we find
2ydy = mda 4 Snxde;

differentiating again, regarding Jdx as constant, We have,

after dividing by %
dy* + ydPy = nda?
Fliminating 7 and 7 from the three cquations, We obtain
Al oyt — gy dady + yatlly = O,

which is the general differential equation of lines of the
second order.

o=, In order o free an cquation of s constints, it will
he necessary to Jilferentiate iLas Dy thmes as thero are
constants to be Ciminated. Forwwo Ccoptions are peces-
sary 1o climinaie a single constint, three 1o climinate o
constants, four to climinate three constants, &t hened,
one constant 1y he climinated from the given cquation
and the first differential cquation ; 1wo (o the oiven egitis
Lot and the {irst and second differential cqualions, Ko

gy, The Jditterential cquation which 18 obtained alter the
constants e climinated, elongs Lo spraeies or order r;f
[ines, of which the given cquation represents one of the
S})(H‘il’ﬁ.

Thus, the differential cquation (Art. 94),
(711'_:/._ 0,
([;l,"/'
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belongs to an order or specics of lines of which the
equation
y:am»{—b,

represcnts a single one, for given values of @ and b.
The equation of a parabola is

¥ = 2px,
and the differential cquation of the species 18
2ady — ydax =0, or dy* + yd*y = 0.

100. The differential equation of a species, expresses
the law by which the variable co-ordinates change their
values; and this equation ought, therefore, to be indepen-
dent of the constants which determine the magnitude, and

not the naetwre of the carve.

101, "The terms of an equation may be freed from their
expoucnts, by differentiating the equation and then com-
bining the differential and given equations.

Suppose, for example,
Pre=Q,

P and Q being any functions of @ and y.

By differentiating, we obtain
NP = dQ:
by multiplying both members by P, we have
ndP = PdQ,

and by substituting for " its value,

nQdD == PdQ.
9
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The same result might also have heen obtained by

taking the logaritiuns of hotlr membiers o the equation

= (.
For, we have )
wl = 14, ’

aud (Art. H7).
o i //’Q .

" =z y

T 0

hence, s Q1P o Pd(Q.

Of Vanishing Fractions, or those whicl take the

/ Urin

C e

. )
102. Tt has been shown in (Ales Avt T, that :’ I

sometimes an undetermined svinholwnd tha s vidue
may be 0, a il guantiy, or infinile.

Th= .\‘_ymlml wises frome the presence of a0 common
factor in the mumerator and denominitor, whichy, becoming
0 {ora p:n‘li('nl;n' vadie of the variable, veduces the frction

to the form -~
0

I we have, for example, a fracton of the form
Pie  w)
y b
Qi ay
in which 2 and Q are finite quantities, and make @ =a,

we shall have

Ple- oy 0O
Qe ay 0
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The valie of this (raction will, however, be 0, {inite or
infinite, according as
">, m=n, m < n,
for under these suppositions, respectively, 1t takes the forin

Pir— ({)j" j " l), o A__l..:,,, -
Q ' Q' Qe —a)y

Let the numerator of the l)ml)()slttl fraction be desig-

mued by X, wnd the denominator by Y, and Tet us sup-

pose an arhitrary inerement o to be given to . "T'he

mancrator and denonnator will then become o function
N . Al

of w0t hy and we shall have from the theorem of "Taylor

d\N h XN AN

e o T e &y,

do 1.2 it 1,203

| AN N BN

N+

Y

S e e - &
e 1 dat v dat 1R

If the value of @ =, reduces to O the differential
coctlicients in the nomerator as far as the zeth order, and
those of the devoninator as far as the #th order, the value

ol the fraction will become,

’/m \ /'m
T R TIE T:
ANl

oo &
da" 1.2.3.4....n e

&,

If we make =0, the value of the fraction will be-
come 0, finite, or infinite according as

m >n, MmN, m <,

and hence, if the value @ —a, rednces to 0 the same

number of differential coefficients i the namerator and
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denominator, the value of the fraction will be finite

and equal to the ratio of the first ditferential coeflicients

which do not reduce to 0.

103, Let us now illustrive this theory by cxamples,

1. It in tihe fraction

—_—
| T
we make o 1, we have But
d X ; d\ :
ny J—— N
dar ’ dr ’
i whneh, 1f we e w1 we have
TAY o\
S — and -, -1,
da i
d X
henee, . -
(/.I'
S ",
d \
or
therefore, the value of the frction when a0 -1, ds 4w
2. Find the value of the friaction
- Qaer §oact
. ~ ., when o ooe
bt — 2hew + be?
7R Y d\’ )
Sl = a2, : Qb —— Lbe,
(LL' 1/."
both of which become 0, when @ — e, Dilferentiating
agiin, we have
PX I\’
! \ = 2u, S22y
da? da

. . a
hence, the true value of the fraction when @ =c¢ 1s —-

b
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. Find the value of the fraction

3 . v P 3
X’ — ax” — a'x a
—~ T , Wwhen 2= a.

.';_'Z — (12
Ans. 0.

. Find the value of the fraction

ax — o*

ck : —— , when x=a.
=202 + 2ax’ — &

Ans. o,
Find the value of

o
———, When =0,

Ans. la—1b.

z

‘What is the value of the fraction

1—sinx 4 cosax
gy rerecerene v ANKADA (e NN
sina + cosx — 1

Ans. «]1.

‘What is the value of the fraction

a—x—ala+ alx

) when 2 =0,
a— \/ 2ax — x°

Ans, =1,
. What is the value of the fraction
a*—2
-, When @ = 1.
l—a+ lx
Ans, = 2.
. What is the value of the fraction
Mol when
M ¥ =a.
la —la’
Ans. na".

9.
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104. It has been remarked (Art. 47), that the theorem
of Taylor does not apply to the case in which a particular
value attributed to « renders every coefficient either 0 or
infinite. Such functions are of the form

in which m and n are fractional.
In functions of this form we substitute for 2, a + &, :

which gives a second state of the function. We then L

divide the numerator and denominator by h raised to a

power denoted by the smallest exponent of &, after which

we make h=0, and find the ratio of the terms of the

fraction. :
When we place @+ h for #, we have in arranging

according to the ascending powers of £, ;

F(a+h)  Ak*+ BR + Ck + &c.,
F(a+h)~ AW + BR + Ch + &ec.

Now there are three cases, viz.: when
a>d, a=d, <.l

In the first case the value of the fraction Wwill be 0; in
the second, a finite quantity ; and in the third it will be
infinite.

105. In substituting a + & for @, in the fraction

(2* = a”)*
(x—a)?
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3

(2ah + ]'f"z):“ b { %

we have 2a+ h)*,
h*

and by making A =0, which renders = a, the value of

the fraction becomes

| e

(Ra)*.

2. Required the value of the fraction
2
(o* — Bax + 24*)°

(2 — af‘)%

when x=a.

Substituting @ + & for @, we have

2
h¥(—a + h)°

=]
=]

1
h¥(— a4+ h)®
I L L
h*(3a* 4 3ah + K*)*  (3d® + Bah+ F*)?
which is equal to 0, when 2= 0.
106. Remark. 'The last method of finding the value of
a vanishing fraction, may frequently be employed advan-

tageously, even when the value can be found by the
theorem of Taylor.

107. There are several forms of indetermination under
which a function may appear, but they can all be reduced
: 0
to the form —.
0
1st. Suppose the numerator and denominator of the
fraction

X
A7

to become infinite by the supposition of #=a. The

fraction can be placed under the form




=
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-
e

) 0 s il
which reduces to 4 when X and X’ are infinite.

2d. We may have the product of two factors, one of
which becomes 0 and the other infinite, when a particular
value is given to the variable.
In the product PQ, let us suppose that # = o, makes
P=0 and Q=®. We would then write the product
under the form, ‘

PQ:—I;—
Q

which becomes % when xér

108. Let us take, as an example, the function
1
(1— :z')Lang—‘j-w.z:,'

in which » designates 180°.
If we make @ =1, the first factor becomes 0, and the

second infinite. But

1 1 /
tanggrw = —_— ‘
cot—»rx
2 !
il
1 l—2 !
hence, (l—m)tang;wwz—-—-———,
ot —»a . 17
C 2 A /

the value of which is s when x=1.
k
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CHAPTER V.

Of the Mazima and Minima of a Function of a
Single Variable.

109. If we have

u=I(w),

the value of the function # may be changed in two ways
first, by increasing the variable «; and secondly, by dimin-
ishing it.

If we designate by « the first value which % assumes
when « is increased, and by #” the first value which »
assumes when @ is diminished, we shall have three con-

secutive values of the function

2 u, o/’

Now, when u is greater than both % and «”, u is said
to be a maximum : and when w is less than both 2/ and
', 1t 1s said to be a minimum.

Hence, the maximum value of a variable Sunction 18
greater than the value which vmmediately precedes, or the
value that immediately follows: and the minimum value
of a wariable function is less than the value which imme-

diately precedes or the value that immediately follows.

110. Let us now determine the analytical conditions

which characterize the maximum and minimum values of

a variable function.
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If in the function

W o I"(.I'),

the variable w be first increased by A, and then diminished

by /A, we shall have (Art 41,

di e e L i W

"= (e Iy = w -} - - . e R &'.Z,,
“ (rt 2 " a1 a1 dat 1203 o
lu b o VTR
W= ey e — . e
(ol = 0 e e T

and consequently,

, i h O e

w o —u - | ioae,

e T e U e

N _I/N h L r[‘l.l,. A :/"lll, R b &
o | da” 1.2 dat 123

Now, i e has a maxium value, the imits of o' - on
and «" <, will both be neantive s awd b w0 1s aommnnmng,
the imits of o' — o awd @ o will bhath e posiive.
Henee, inorder that w0 may have sumaximune or nininung
vidue, the sivns of the himits of the two (lc\t-lnlnm-n[s nitsl
be both minus o both plus,

Bat since the ternss involving the first power of A, in
the two developments, have contrary signs, 1L follows that
the limits of the developments will have contrary signs
(Art. 41); henee, the function @ can neither have a maxi-

mum or a4 winiun unless

du
o= 00
dx
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and the roots of this equation will give all the values of
2 which can render the function @ cither aomaxiamun or
L.

H:nin{;‘ pade the fivst differential coefiteient equal to 0,
the stuns of the Tt of the developments will depend on
e wivn of the secmd difierential cocilicient,

Bt e the sions ol these Tinidts ave both neative
Wiow e dsoa masdeum, and both positive when e is a
iiatat, i follows that the second differentind coceflicrent
wili he negutive when the fimetion 15 a0 s, and
positive when it is a minimon, Henee, the voots of the
Cotiniion

i

L - ()’
o

being substitnted i the second dilferenual coellicient, will
render 11 negative mocase of aomaxiaum, and positive
case ol wonmnimunn; awd sinee there iy be more than
one vidue of wowhich will sausly these conditions, it Tal-
fows that there miay be more thin one maxinunn or one

L.

But if the roots of the equation

it

o ’
reduce the second differential cocflicient to 0, the signs of
the limits ol the developiments will depend on the signg
of the terms which involve the thivd differential cocflicient
and these signs bemg different, there ean neithier he o
maximuin or a minimuim, unless the values of 2 also reduce

the thind differential cocllicient to 0. When this is the

case, substitute the roots of the equation
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du

=

in the fourth differential coeflicient ; if it becomes negative
there will be a maximum, if positive a mnimun. If the
values of o reduce the fourth differential cocthcient to 0,
the following differential coeflicient must be cexamined.
Hence, in order to find the values of & which will render

the proposed function a maximum or a minipum.

1st. Find the roots of the equation

du

da

od. Substitute these rools in the succeeding differential
coefficients, until one s _found which does not reduce to Q.
Then, if the differenticl coefficient so found be of an odd
order, the values of x will not render the fuaction cither
@ mavinuon or o manimn. Bt if o be of an even
order, and negative, the Sunction will be a wmeaimun ;i

positive, @ MLNEILULIN

111. Remark. Before applying the preceding rules to
particulur examples, it may he well 1o remark, that 1if a
variable function 1s multipliml or divided by a constant
quzmlity, the smne values of the variible which render the
function a maximune or i winintum, will also render the
product or quotient i maximum or a minimum, and hence

the constant may he n(*gl(-(:h-«l.

2. Any value of the variable which will render the func-
tion A maximum or @ ninim, will also render any root
or power a IMAXIum or i i ; and henee, if a func-

tion is under a radical, the radical may be omitted.
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EXAMPLES,

L. To find the vidue of 2 which will render » a maxi-

nrun or w4 onininu in the equation of the curele

dy @
de ™y’
making  — 20, wives a == 0,
Y

The sccond differential coclficient is

l/:zil/ .’I'B + :I/'.!

ol : )
dx* _7/"

and sinee making @ = 0, gives y == R, we have

Py 1

det TR

wluch being negative, the value of o - 0 renders y a

IMAXnur.
2. Find the values of @ which will render % a maximum

.

or a minbmun i the equation,

y s a— b 4 af,

differentiating, we find

dy d¥ .
Ie= b+ 22, and =%
. . b
making, —b +22=0, gives = 5;

and since the second differential coefficient is positive, this

value of 2 will render v a minimum,  The minium
10
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value of y is found by substituting the value of z, in the
primitive equation It is

Lk
y=d—

3. Find the value of « which will render the function
u = d* + Ve — Fa?,

a maximum or a minimum,

du ) I
— = —2c'r, hence =
de 2
du ;
and, S0 = et
da®

hence, the function is a maxunuim, and the maximum
value 18
I

w==at -+ —.
4

4. Let us take the function

u == 3utet — e 4 ¢

du Yy b
we find e 9t -0, and  x—= & —
X

The second dilferential cocflicient is

d*u ;
T 15a%e.

dua
Substitating the plus root of @, we have

d*u Yy
Z[;Z’ fd -{— 6 (ll‘ 1




DIFFERENTIAL CALCULUS. 111

which gives a minimum, and substituting the negative
root, we have

d*u
vy = —6 (ll)z,
dx

which gives a maximum.

The minimum valne of the function is,

. DA
u=c" —-—;
Qa
and the maximum value
AN
u=c+ <
Ya

112. Remark. Tt frequently happens that the value
of the first differential cocflicient may be decomposed into
two factors, X and X7, cach containing a, and one of
them, X for example, reducing to 0 for that value of x,
which renders the function a maximum or a minhnum.
When the differential coeflicient of the first order takes
this forn, the general method of finding the second diffe-

ventinl cocflicient may be much simplified,  For, if

e xx,
da:
we shall have ’
d*u _ X'dX XdX
da?t T de dx

But by hypothesis X reduces to 0 for that value of z
which renders the function ¥ a maximun or a minimum

(['2",’ _XdX
d* T de

hence,
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from which we obtain the following rule for finding the
second differential coefficient.

Differentiate that factor of the Sfirst differential coef-
ficient which reduces to 0, multiply it by the other factor,
and divide the product by dx.

5. To divide a quantity into two such parts that the mth
power of one of the parts multiplied by the nth power of
the other shall be a maximum or a minimum.

Designate the given quantity by @ and one of the parts
by @, then will @ —a represent the other part. Let the
product of their powers be designated by u ; we shall then
have

u=a"(a—ax),

whence, Z—Z =ma"" (a — a)" — na" (a — oy,
= (ma — mx — nx)a""" (a — 2)"7,

and by placing each of the factors equal to 0, we have
_ ma
TmAn
The second differential coefficient corresponding to the
first of these values, found by the method just explained, is

@ 2=0, 0 =0

and substituting for 2 its value, it becomes
mm—lnn—lam-bu-l

hence, this value of # renders the product a maximum.
The two other values of @ satisfy the equation of the

‘é}—om) Mm A =4 _ o =] e~ o

| "/m§j T MR L

L ' v/ @!4’&)” i ’”—“
L’rr\—b*)

M s a“" g n e “—4—-‘0-”\'"
i —— - =
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problem, but do not satisfy the enunciation, since they are
not parts of the given quantity a.

Remark. 1f m and n are each equal to unity, the quan-
tity will be divided into equal parts.

6. To determine the conditions which will render y a

maximum or a minimum in the equation
y* — 2may + a* —a® =0.
The first differential coefficient is

dy _my—uax,
de™ y—ma’ (Y -7

& )
hence, my—2=0, or y=—

Substituting this value of y in the given equation, we
find

ma
2 X = ———— ;
i Vi—m?

and the value of fy corresponding to this value of x is

A a
ST

To determine whether y is a maximum or a minimum,
let us pass to the second differential coefficient. 'We have

B il v ok
;,;—(my x)(y —ma)™';

dl/
-1
hence d*y _( de )
: @~ y—ma '

10
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and since %:0, we have

dy _ 1
do? ~  y—ma’

and by substituting for y and z their values, we have

—_— = —

da? aVl—m*
hence, ¥ is a maximum.

7. To find the maximum rectangle which can be in-
gcribed in a given triangle.

Let b denote the base of the triangle, % the altitude,
y the base of the rectangle, and @ the altitude. Then,

u = ay = the area of the rectgngle. f
But b:h::y: h—ax: ‘r
hence A b R
and consequently, ’ £ T
bha —ba® _ b 0
e =2 o —a).

and omitting the constant factor,
%—Z:h——2w, or w:%;

hence, the altitude of the rectangle is equal to half the
altitude of the triangle : and since

[Puonile ' b
dzﬂ— ,«': \7 *’2 .
the area is a maximum. . - §

T AT
/ / N AN " ——— &
i \\ an 2 2 by =50

( e

& - 7a p (,/'
PV T L, G ek e S S g y
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8. What is the altitude of a cylinder inscribed in a given

right cone, when the solidity of the cylinder is a maximum ?
Ans. One third the altitude of the cone.

9. What are the sides of the maximum rectangle in-
scribed in a given circle ? s
. Ans. Each equal to R V.

10. A cylindri(:ul vessel is to contain a given quantity

of water. Required the relation between the diameter of

the base and the altitude in order that the interior surface

may be a minimum.

———

- Ans. Altitude = radius of base.

11. To find the altitude of a cone inscribed in a given
sphere, which shall render the convex surface of the cone
a maximum,

: Ans. KRitude — _i_ R.

12. To find the maximum right-angled triungle which
can be described on a given line.
Ans. When the two sides are equal.
13. What is the length of the axis of the maximuit
parabola that can be cut from a given right cone ?
Ans. Three-fourths the side of the cone.
14. To find the least triangle which can be formed by

the radii produced, and a tangent line to the quadrant of a
given circle.

Ans. When the point of contact is at the middle of the
arc.

15. What is the altitude of the maximum cylinder which
can be inscribed in a given paraboloid ?

Ans. Half the axis of the paraboloid.

~f
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CHAPTER VL

Application of the Differential Calculus to the
Theory of Curves.

113. Tt has been shown in (Art. 1 3), that every relation
between a function and a single vuriable on which it
depends, may subsist between the ordinate and abscissa of
a curve. Hence, if we represent the ordinate of a curve
by a function y, the abscissa may be represented by

the variuble .
& Tangents and Normals.

114. We have seen (Art.
15), that if y represents
the ordinate and x the ab-
scissa of any curve as P,
the tangent of the angle /
P, which the tangent ( \
foris with the axis of ab- -~ _,»

scissis will be rcpr(:scntcd

by

dy and dz being the differentials of the ordinate and ab-
scissa of the point of contact .
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But we have (Trig. Th. II),

T #5TR : Ptang Tow RE;

1
that is [ ) S o B o
4 dx

de
TR =1- sub-tangent.
“dy

115. The tangent T'P is equal to the square root of

hence,

the sum of the squares of TR and RP; hence,

 d2?
mp _ : sl 168
e = \/l T d tangent.

116. Irom the similar triangles 1T'PR, RPN, we have
PR PR™:: PR RN}

1/(/"': Y~ oo Sy LI

hence,

X dh
consequently, RN =y Y — sub-normal.
: Y ax

117. The normal PN is equal to the square root of the
sum of the squares of PR and RN ; hence,

T
o = !/\/l + ‘[‘//., = normal.
ax”

118. Let it be now required to apply these formulas to
lines of the second order, of which the general equation

(An. Geom. Bk. VI, Prop. XI1, Sch. 3), is,
y® = ma + na’.
Differentiating, we have

dy m+2nx__ m+42nx

."‘-: — S ) - T ’
da 2y 2 Vma + na?
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substituting this value, we find

sub-tangent TR - j(lz ..(ma + na’ )’
dy A onx

——————m ;L a4 7\2
'VI): \/ i ( ‘—':;.\/ - ‘,2 ¥, ‘
T Y 1 + f/y“‘ e+ ot 1. " f Zlu‘_l y

dy m + 2 e

sub-normal RN =y -7 = ——;— .

e 2

PN = y\/l —+ ’i//“ =, \///u' +oat b (I/L + 2

By atributing proper values to e and n, the above
formulas will become :\})pli(:uhlu o each of the come
sections. In the case of the ||:n'ubu1:|, a0, and we have

TR = 2w, = | ‘r{‘,
v oy .MW L
]\ l\ = — l ;\ ool TN |* ST T

2 4

119. Tt is often necessary 1o represent the tangent and
normd lines by their eruations, Iy determine these, 1n
a general manner, it will be necessary first to consider the
analytical conditions which render any two cnrves tangent

to each other.

Let the two curves, PPDC, /
PRI s C/ -
PLC, intersect cach other at I -
P and C. |
. . Yy e
Designate the co-ordinates of l T
i

the first curve by and g, and 1'// '
I i

the co-ordinates of the sccond by
i e . N . _ . i
a, 4. 'Then, {for the comion —

point I, we shall have

x=2a, y=yv.
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If we represent B G, the increment of the abscissa, by

L, we shall have, from the theorcin of Taylor (Art. 44),

e oy by P Lo B e
CG—PB=ClF =t oy gt e b e

dy' h (F// R .
v PZ ARG ANl =S &
CG—PB=Cl da’ 1 T4 da 1.2 da™1.2.3

hence, by placing the two members eqgual to cach other,
and dividing by £, we have
r!l/ e h

dy d* 'y h
ey &e. A
de " dit 1.9 + "o + da™® 1.2

If we now pass to the limit, by making L =0, we shall
have
dy (/1/
Tda T dal
in which case the point € will become conseculive with P,
and the curve PEC tangent to the enrve PDC. Hence,
oo lines will be langentto eack other at a common point,
when the co-ordinates und first diffevential coefficient of
the one, are equal 1o the co-ordinates and first differential
coefficient of the other.

120. The equation of a straight line 1s of the form

y =ax -+ b,

powe dy _
; ? de

But the cquation of a straight line passing through a
given point, of which the co-ordinates are 27,y s (A,

Geom. Bk. I, Prop. 1V),

gy - a(e—a),
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or by substituting for a its value, we have, for the equation
of a straight line passing through a given point,

y—y'=2@—a").

This line may be made tangent to a curve at any point
of which the co-ordinates are @, y”, by substituting for

d%' the first differential coefficient found from the equation

of the curve, and making 2/, y”, equal to a’, y' of the
curve.

121. Let it be required, for example, to make the line
tangent to a circle at a point of which the co-ordinates are
@', y’. Since the co-ordinates of this point will satisfy
the equation of the curve, we have

w//2 + y//2 = RZ’

and by differentiating,
dy’ o
2= T
and by substituting this value in the equation of the line,
and recollecting that #'/? +y"*= R?, we have

yy/’+ zad' = R,
which is the equation of a tangent line to a circle.

122. A normal line is perpendicular to the tangent at
the point of contact, and since the equation of the tangent
is of the form

y—y'=La—d)
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the equation of the normal will be of the form (An. Geom.
Bk. II, Prop. VII, Sch. 2),

dx
y—y'= —@(m—z”),

and this line will become normal to a curve at a pc(l)ijllt of
._{L_ be
ll!///

found from the equation of the curve, and substituted for

da p i 2
f, and the co-ordinates 2, y” of the straight line be
Yy

. . Y
which the co-ordinates are '/, vy, if the value of

made equal to @, " of the curve.
The equation of the normal in the circle will take the
form,
/!
. e
Y= ,'17/'1
123. To find the equation of a tangent line to an ellipse

at a point of which the co-ordinates are o', y/', we have,
AZ!///Z »}_ ]{3‘,1‘//2 — AZ]}Z.

By differentiating, we have

“

dy" B
do! — AW’
hence, we have
B’
4 S
y—y'= — (2 —a), .

A‘.ﬁ!/(/
which becomes, after reducing,
A’yy" + BPxa' = A*B2,

The equation of the normal is

AL’I///
y-y'=gglo v

11
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a tangent to lines of the

124. To find the equation of
for a particular point

second order, of which the equation

(An. Geom. Bk. VI, Prop. XII, Sch. 3) is

y//2 p— ml”—‘— nz.//Z-

By differentiating, we have
dy' _ m+ 2na’’

dw’/ 2_'///

ation of the tangent to a line of the second

hence, the equ:

order is
m + 2na’’
y—y'= e
and the equation of the normal (Lt
RNy — 2?/” SRR -
y—¥'= =y e, 30

!

Of Asymptotes of Curves. .

ote of a curve is a line which continually

125. An asympt
s tangent to it at an

approaches the curve, and become
infinite distance from the origin of co-ordinates.

Let AX and AY be
the co-ordinate axes, and

R

the equation of any tan-
gent line, as TP.




DIFFERENTIAL CALCULUS. 123

If in the equation of the tangent, we make in succes-
sion ¥y =0, =0, we shall find

da'’ dy"!
S 9=AD=9”—1‘”w-

o e ey
2=AT=o'-y oy

If the curve CPB has an asymptote RE, it is plain
that the tangent PT' will approach the asymptote RE,
when the point of contact P, is moved along the curve
from the origin of co-ordinates, and 7' and D will also
approach the points R and Y, and will coincide with
them when the co-ordinates of the point of tangency are
infinite,

In order, therefore, to determine if a curve have asymp-
totes, we make, in succession, 2 =® and y = o in the
values of AT, AD. If either of these become finite, the
curve will have an asymptote.

If both the values are finite, the asymptote will be in-
clined to both the co-ordinate axes : if one of the distances
becomes finite and the other infinite, the asymptote will
be parallel to one of the co-ordinate axes ; and if they both
become 0, the asymptote will pass through the origin of
co-ordinates. In the last case, we shall know but one

point of the asymptote, but its direction may be deter-

b : dy o

mined by finding the value of d—‘/, under the supposition
&

that the co-ordinates are infinite.

126. Let us now examine the equation

y? = ma 4 na?,




‘ /} 1
/4 4"
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of lines of the second order, and see if these lines have
asymptotes. We find

AT_—_-w__j____.___,_"_"L‘”’,
m+ 2ne m+ 2ne
ma + 2na’ ma

v R Bt
’ 2y 9 Vmz + o’

which may be put under the forms

— 7 L. SR
—+2n 2/ 4 n
z x

and making & =®©, W€ have

m . m
AR=—g and AE_21/;¢_'

If now we make 7= 0, the curve becomes a parabola,
and both the limits, AR, AE, become infinite : hence,

the parabola has no rectilinear asymptote.
1f we make 7 negative, the curve becomes an ellipse,
and AE becomes imaginary : hence, the ellipse has no

asymptote.
But if we make 7 positive, the equation becomes that

of the hyperbola, and both the values, AR, AE, become

finite.  If we substitute for n its value e we shall have

AR=—4, and AE= = B.

2 B the I hoos bola
o (A~ !

b
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~

Differentials of the Arcs and Areas of Segments
of Curves.

127. It is plain, that the chord and arc of a curve will
approach each other continually as the arc is diminished,
Or and hence, we might conclude that the limit of their ratio
“is unity. But as several propositions depend on this rela-

tion between the arc and chord, we shall demonstrate it
rigorously.

128. If we suppose the ordi-
nate PR of the curve, POM to
be a function of the abscissa, we
shall have (Art. 16),

PQ=h,
and MQ= (P+Ph)h;
Yo 230 I Y
in which P= (d;{ Al =X
P L= X

Hence, PM=VIP+(P+PhPR=hvVI+(P+Phy.

We also have NQ=Ph;

hence, PN =V + PP =hv1+ P,
NM=NQ—-MQ=— Ph;

hence, we have

PN+MN _hvVi+P—PR _+/1+P— PR
PM /it (P+ Py Vir(Ps Py
11°

X-X = JAO = (DA; ID:

) o
JY @ = P L/i«, NPD - L ):“




i
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of which the limit, by making h=0, is
/1 P?
A T
Vit P?
But the arc POM can never be less than the chord PM,
nor greater than the broken line PNM which contains it ;
hence, the limit of the ratio
POM
PM
and consequently, the differential of the arc is equal to the
differential of the chord. But when we pass 10 the limit
of the arc and chord, PM becomes the differential of the

chord, and PQ and QM, become the differentials of
and y; hence, if we represent the arc by z, we shall have

=3

that is, the differential of the arc of a curve, at any point,
is equal to the square root of the sum of the squares of
the differentials of the co-ordinates.

129, To determine the differential of the arc of a circle
of which the equation is

z’+y’=R’,

we have zdz +ydy =0, Or dy=—-w._;_d"";

' T Pde
whence, dz=\/dz“+w—zy—-,—=d-§\’?+?,

=B£= :\:-——E,_L—J—f_———
y VR —a&

B, mal

et ———
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. . mThe s hn 1e
the same as determined in (Art 71). The plus sign 1s to
be used when the abscissa « and the arc are increasing
functions of each other, and the minus sign when they

are decreasing functions (Art. 31).

130. Let BCM be any segment R
of a curve, and let it be required Fo Blait I
to find the differential of its area. |

The two rectangles DCFE, B,

DGME, having the same base /‘
DE, are to each other as DC to ' ‘
EM ; and hence, the limit of their T

ratio is equal to the limit of the ratio of DC to EM,
which is equal to unity.

But the curvelinear area DCMI is less than the rect-
angle DGME, and greater than the rectangle DCFE :
hence, the limit of its ratio to either of them will be
unity. But,

DCME _DCME  DEFC _ . DCME
DE DE DEFC " X DEFC

or by representing the area of the segment by s and the
ordinate DC by y, and passing to the limit, we have

ds

== or ds = yda ;
hence, the differential of the area of a segment of any

curve, is equal to the ordinate into the differential of the
abscissa,
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131. To find the differential of the arca of a circular

segment, We have
Py = R and y = LV RE A
S
hencee, ds = die VIRF = a”

The differential of the segment of an ellipse, 1s
B e
ds = i dry/A* —
and of the scgment of a p;n‘u\ml;\

ds == dwx \/2};1'.

Signification ¢ the Differenticl € Soefficients.

132, 1t has already been <hown that, if the ordinate of
a curve be regarded as @ function of the abseissi, the first
differentinl coe Alicient will be equal 1o the tangent of the
angle which the tangent e fors with the axis of abscrs-
sas (Art. 15). We now propose Lo show the relation
between i Curve and the second differential coeflie 1ent,
the ordinate heing regarded as 1 function of the abscissit,

Let AP be the abscissi
and I’M the ordinate of a
curve.  From P lay off
on the axis of abseissus
pr —h and PP eh
Draw the ordinates PM,
Py, Pl also the lines
MM N, MM and Tastly, 77T
MQ, M'Q, parallel 1o the
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axis of abscissus. 'Then will M/Q = N/, and we shall
have
PM =y,

. (L'l_h_ (I“j I?
PM =y + dat 1.2

g Ly 20 lll/_;lﬁif S
Pﬂz—y*ll}_d 1.:3F Coy

2
M — PM = M'Q _']" »]' + Py e,
dx da? 1.2

PIM PP M =M (Y = '/’/] _‘,{'/_:jﬁ__f. &e.

MY — M Q=+ M/N = ‘/’ ey e
o

Now, since the sign of the first member of the equation
is ussentially positive, the sigu of 1he second iember will
also be positive (Alg. At 85). But il we pass to the
himit, by diminishing /A, the sign of he sccond member
will depend on that of the second differential coclficient
(Art. A1) 1 henee, the sceond  dilferential cocllicient s
positive.

If the curve s below

. . . A
the axis of abscissas,

the ordinates will be — 1.
negative, and it is casily
scen that we shall then
have

M'Q—MQ=—M'N=
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Now, since the first member 13 negalive, the sceond
member will he negalive: hence W conclude that, if
curve 1s convex towards the axts of ubscissus, the ordi-

nate and second cli_ﬁ‘(’fr:utictl coeffictent will have like $IgNS.

N
Ve MH
oM
133. Let us now cons \ MD A‘Q'
. N ’ A “
sider the curve CMAM MY, I // |
which is concave towards '\ M( - \,)"
\ /\ iy

the axis of abscissas. We \ / \
shall have, « |

P =y, e

P =yt '(II_I/" ho, ,rrl»,/”_/!;r ]

A - e &,
el dat 1R i

ly2h Sy A I )
)//1‘1// piman) - (7 . - . e \\ .
1 iy gt e e &y,

Iy b dy ‘
3 ] ) e ¢ :V( / T e CC.
P — M Q= Eo e e &,
d dy B

]’”1\[”——1”]\[’—3 M”Q/f Yy W ‘ ‘ &,
e et 12

NT
MQ — M = — NM = - /‘,I,, o &
e

But since the first member of the equation is negalive,

the essential stgn ol the second member will also be

negallve : henee, the second differcutial cocflicient will

be negative.
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P pr pn

I AN,
Al
|
If the curve is helow the
axis of abseissas, the ordi- \\
nate will he nogative, and it e
15 casily seen that we should M
N ‘\(\\‘ ‘()’
then have A 1‘
\V\ﬁ’
N

MY~ AQ = ¢ NM7 = Y e 4 &eos

“da

henee we conclude thad, ¢/ « crorve is concuve tnvurds the
awes of abscissas, the ordinale and sccond  differential
corfliciont will hioe contravy signs,

The ordinate will be considered as positive, unless the

contrary 15 mentioned.,

134, Remark 1. The co-ordinates @ and v, determine
asingle point of a curve, us M. The first differential of
g 1 the it of the difference between the ordinades PAlL
2741, or the difference between two conscentive ordinates.

The sccond differential of y 1s the it of AN, aud
i3 devived from M'Q or dy, inthe sane way that oy 1s
derived from the primiutive function.  "T'he abscissa heing
supposed to nerease tniformly, the difference, and conse-
quently the limit of the difference between 717 and 1 PV
is 0: therelore its sccond difterential is 0. The co-ordj-
nates @ and ¥, and the first and sccond differentials deter

mine three points, M, A, M| consceutive with cach other.
135, Remark 2. When the curve is convex 1o rards

the axis of abscissa, the first differential cocflicient, which
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represents the tangent of the angle formed by the tangent
line with the axis of abscissas, 15 an increasing funcuon of
the abscissa: hence, its differential cocflicient, that is, the
second differential cocfficient of the function, ought to be
positive (Art. 31).

When the curve 1s concave, the first differential cocetli-
cient is a decreasing function of the abscissis Lence, the

second differential coefficient should be negative (Art. 30).

Ezamination of the Singulur Ponls of Curves.

136. A singular point of a curve Is ONe which is distin-
guishc(l by some p:u'ti(:\lhlr property not enjoyed hy the
points of the curve in general : such as, the point at which
the tangent is p:lrull(zl, or pcrpundi(:ul;u‘ 1o, the axis of
absCissas,

137. Since the first differential coeflieient cxpresses the
value of the tangent of the angle which the tangent line
forms with the axis of abscissias, aned sinee the tangent 15
0, when the angle 15 0, and mfinite when the angle is 907,
it follows that the roots of the cquation

dy

- -0
da ’

will give the abscissas of all the points at which the tan-
gent is puru\\cl 1o the axis of abscissas, and the roots of
the equation

dx

d,
y:m, or ”:0,

dx dy
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will give the ahscissas of all the points at which the tan-
gent 1s perpendicular 1o the axis of abscissas.

I3X.If 4 curve from being convex towards the axjs of
abscissas hecomes concave, or from being concave he-
comes convex, the point at which the change of curvature
takes place is called o point of wfleaion.

Since the ordinate and differential coeflicient of the
sccond order have the sane sign when the curve is convex
towards the axis of abscissas, wnd contrary signs whea 1t
Is coneave, it follows thi at the point of inflexion, the
sccond  differentinl cocflicient will change its sign. By
between the positive and negative values there will be one
alue of @ which will reduce the sceond differential coefli-
cient 1o 0 (Alg. Art. 2M) 1 hence the roots of the eqgiation

l/':I/ -0

will give the abscissas of the points of inflexion.

139. Let us now apply these principles in discussing
the equation of the circle

We liave, by ditlerentinting,

and placing

we have 2 -0,

Substituting this value in the ¢quation of the curve, we
have
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hence, the tangent is pavallel 1o the axis of abscissas at
the two points where the axis of ordinates intersects the
circumference.
If we make
di x 7
;{:_f:'n, or ———’/—::O,
de y @
we have y = 0; substituting this value in the equation,

we find

2=+ R,

and hence, the tangent is perpendicular to the axis of
abscissas at the points where the axis intersects the e
cumfcrence.

The second differential cocflicient is equal to

R

v
which will be negative when » Is positive, and positive
when ¢ s negative.  Henee, the circnmlerence of the
circle is concave towards the axis of abscissas.

If we apply o similae analysis 1o the cyration of the
ellipse, we shall find the tangents pavaliclh 1o the axs of
abseissas at the extrenities of one axis, and perpendicular
to it at the extrennties of the othier, and the curve coneave
towards Its axes.

140. Let us now dizeuss o class of curves, which may
he represented by the equation

m

y b e(r—a),

in which we suppose e 1o he positive or negative, and

different values to be attributed to the exponent s,
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When ¢ is positive, and m entire and even,

By differentiating, we have

dy =me(x — a)" !,
da

2

(e — Ye(z —a)2,

d 2

If we place the value »;I/ =0, we find o = a, and sub-
du

hl,llllllll”‘ this value in the cquation of the curve, we find

y:;b.'

henee, @ =g, y==b, are the co-ordinates of the point
at which the tangent line s parallel 1o the axis of
HUNEIT S

Siee o s even, m— 2 will
also be even, and henee the second
differential cocllicient will he posi-
tive forall values of o, The curve
will therefore he convex  fowardy
the s of X, and there will

1o pomt of inflesjon.

The value of & - o renders the ordinate ¥ 4 minimum,
sinee after (hﬂ( remiations o dillerential cocflicient of an
even order becomes constant and positive (Art. 1 10),

The cirve does not interseet the axis of X, but cuts the

axis of 'Y a1 4 distance from the arigin expressed hy

= b+ ca™,
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141. 2d. When ¢ s negatwe, and m entire and cven.

We shall have, by diffcrentiating,

!
W - me(x — u ¥y
dx
'y .
and S (e —1)c(e— )"
da?

The discussion is the same as
hefore, excepting thiat the sccond V <
dulerential coeflicient being nega- ‘\
tive for all values of wy the curve
s concave towards the axs of
abscissas, and the value of w0 a, [ S
comcders the ordmate » oa -
nun (Art. 110).

-

P1e. 3de Whea ¢ s plus or s, andd au entive and

Huoven.,

We shall have, by differentiating,

/
@ = Loamc(e — 1/)“_1,
d.r
J
] ‘ I( Vo (e D) e(a— )t T
da S

The first differential cocficient will be 0, when o =a;

henee, the tangent will be paratlel to the axis ol abscissas,

at the puint of which the co-ordinates are @ — ¢, 4 = h.
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Since the exponent m — 2 is
uneven, the factor (z—a)"~* will
be negative when «< a, and
positive when @ > a ; hence, this >

factor changes its sign at the

point of the curve of which the

abscissa is « = a.

If ¢ is positive, the second differential coefficient will be
negative for o < a, and positive for 2 > @ : hence there will
be an inflexion when 2 — a. If ¢ were negative, the curve
would be first convex and then concave towards the axis
of abscissas, but there would still be an inflexion at the
point 2 =a. At this point the tangent line separates the

two branches of the curve.
There will, in this case, be neither a maximum mor a
minimum, since after m differentiations a differential coef-

ficient of an odd order, will become equal to a constant
quantity (Art. 110).

143.  4th. When ¢ is positive or negative, and m a
©

~ . . ~
Sraction having an even numerator, as m = —,

By differentiating, and Supposing ¢ positive, we have

da 2 - S 2c
=g =20
) 3(x—a)?
&y 2c

de® (1

dbL 9(.’1,‘—-11)3

If we make # = q, the first differential coefficient will

become infinite ; and the tangent will be perpendicular to

12
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the axis of abscissas, at the point of which the co-ordinates
are @ =, y = b
In regard to the sceond dilleren-
tiad cocilicient, it will become -
pite for a =, and negative for
every other value of o, since the
fuctor (o —a) of the denomntor
is raised to a power denoted by an
even exponent. Henee, the curve o
will he coneave towards the uxis of
abselssas.
I we take the equation of the curve
2
y =0 o{r— r/i):;v,
and ke @ =a 4 b, and o= e — h, we shall have, in
cither case,
2

y="hbtchy

and hencee, y will be less for o = a, than for any other
value of 2, cither greater o less than «.  llence, the
value 2= o, renders gy a T OG LR
I ¢ were negalive, the equation would be of the fonn
Pl

Yy 6 — (:(J,' o u)'-‘- ;

and we should have, by differentiating,

dy Qr
LT T
o S(r-- a)®
Ly 2

and T T ——r.
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. - b3
The first and sceond difleren-

tial cocflicients will he infinite for
Sy - I
@ = ¢, and the sccond diflerential
cocllicient will he positive for all
. o . e M

viues of 2 greater or less than ¢ ; 7]
wnd henee, the curve will be ean- e —
vex towards the axis of ahscissis,

I i the equation of the cirve

2

Yo b,

we nitke @= g fy and w - —fi, we shall have, 1n
cither ease,

2
Yezb—ch?;

and hencee, yowill be areater for @ =a, than for any other
vihie of @ cither greater or loss than a. 1enee, the

value @ =« renders Y i maxinun,

V4. Rewark.  Ihe conditions of & maximum or a
minium deduced in Art. 110, were established by means
of the theorem of Taylor. Now, the cnse m which the
function changes s form by o particulur value attr
buted 1o @, was excluded in the demonstration of (hat
theorem (A, 15). Henee, the conditions of mininnun
and  muximun deduced in the two lust cases,  ought
not 1o have appeared among the general conditions of
Art. 110,

We therefore see that there e lwo species of maxing
and minima, the one characterized by

/
:7"’( =2 (), the other by .'/I/ =g,
S h

do
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1n the first, we detennine whether the funcuon 1s i
MAXINWIm O @ i by exammning the subsequent
differential coclficients; and in the second, by exumining
the value of the function before and after that value of
which renders the first differential cocliicient infinite.

The branches M D, ML, which arc hoth represented by

the cquation
y =b (e — )y,

are not considered as parts ol a conlinnous curve. Ior,
the mnu.ll relations between yoand @ which deternnne
cach ol the parls MDD, ML, s entirely broken at the
point M, where @ - The two parls arc therelore
regarded as separate Lranches which nite at AL The

point of unien is called acusp, or v cusp poinl,

145. Hthe When ¢ s ]m.s'ilz'nc or negdalive and 1w
. . . . 3
fruction Jving an even denoninator, as m .
Ny 1
[nder this supp()sili(m the eyuation of the curve will

hecome

3
y=h (e —a)t,
and by differentiating, we hiwve
dy e
-‘—/ T
T

de (e — a)

Py 3o
and G e D

i’ 4.4((1"——(1)2
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The curve represented by this
cquation will have two branches :

the one corresponding to the plus Iy

sign will be concave towards the

axis of abscissas, and the one cor- K
respondmg 1o the minus sign will he Af” “‘
convex.  BEvery value of & less than

« will vender y imaginary.  The co-ordinates of the point
M, are o — AT

MG 6 When ¢ 4y positive or wegalive and w o

Sraction //(1/7('//;4' nenca nneralor and. an uneven de-

nownalor, ay gy =2

Under this supposition the equation will become
yob el —a),
and by differentiating, we have

dy " S

do T T 7
S — )
oy D2
o o
1/14.“ ’

O 0 (e )t

from which we see (hay if we e the superior sion of (he
fest equation, the curve will Le convex towards the g
of abscissas for a oy that theve will he a point of mflexion
for @ = oy and thit the curve will be concave {or s g
I the Tower sign be cinployed, the first hraneh will heeome

concave, and the other convex,

147, The cusps, which have heen constdered, were

formed by the wnion of 1wo cirves thid were convex -
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wards each other, and such are called, cusps of the first
order.

It frequently happens, however, that the curves which
unite, embrace each other. The equation

(y-ﬁy:w”;

furnishes an example of this kind. By extracting the
square root of both members and transposing, we have

5
y=a*ky’;
and by differentiating

dy 5z d*y 58 -3
-2 =22+ —a* —_ =0 — . — 2%,
dx 2.1 : da? 2 9

We see by examining
the equations, that the curve
has two branches, both of

which pass through the ; //\

origin of co-ordinates. The l |

upper branch, which corres-

ponds to the plus sign, is constantly convex towards the
axis of abscissas, while the lower branch is convex for
x<—;)2—5-, and concave for x> ‘—;)‘;1._— and a<1. At
the last point the curve passes below the axis of abscissas
and becomes convex towards it. If we make the first dif-
ferential coeflicient equal to 0, we shall find # =0, and
substituting this value in the equation of the curve, gives
y=0; and hence, the axis of abscissas is tangent to both
branches of the curve at the origin of co-ordinates. At
this point the differential coeflicient of the second order

is positive for both branches of the curve, hence they

64

p
.
|
N
I

. X W
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are both convex towards the axis.  When the cusp s
formedd by the union of two curves which, at the point
of contact, lie on the same side of the common tangent, it
15 called a cusp of the second order.

50 Let ns, as another exanple, discuss the curve
whose cquation is

iy 0 -+ (.1' - (l) \/; ~ C.

By differentiating, we obtain

R
e o

We see, from the couia-
tion of the curve, that iy will
be maginary for all values
of @ less than .

Fora o o, we have yoob;

and for w - ) we have two

vilues of 4 and  conse-

aquently two o branches  of

the corve, untib @ o« when they unite at the point A,

IFor a0 there will he two real values of i and conse-
guently two branelies of the curve,

T'he pomt M, at
which the |

wanches intersect each other, s called o mwl-

tple pont, and differs from @ cusp by hetng a point

of Intersection instead of a point of tangeney. At the
multiple point M there are two tangents, one to each
branch of the curve.

The one makes an angle with the
axis of abscissas, whose langent 1s
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the other, an angle whose tangent 13

149. Besides the cusps and multiple points which have
alrcady been discussed, there are sometimes other points
lying entirely without the curve, and having no connexion
with it, excepting that their co-ordinutes will satisfy the
equation of the curve,

IPor example, the equation
ay? — o 4 ba® =0,

will be satisfied for the values
z= 0, y=x0; and henee,

the origin of co-ordinates 4,

satisfies the  equation  of the

curve, and enjoys the property

of a multiple point, since it Is
the point of union of two values
of x, and two values of .

If we resolve the equation with respect to y, we find

Y= 7\/7_:?

and hence, 7 will be imaginary for a1l negative values of
@, and for all positive values hetween the linits 2 =0 and
z="b. For all positive values of @ greater than &, the
values of y will be read.

The first differential cocllicient is

dy  w(3r—2 b)
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or by dividing by the common factor @,

and making @ = 0, there resulls
dy 20
N

which iy Imaginary, as it should be, sinee there is no point
of the curve whicl, Is conseeutive with the isolated or con-
jugale  point.  The differential cocflicients of the higher

orders are also imaginary ag the conjugate points.

150, We may draw the following conclusions from the
preceding discussion.,

Ist. The cquation (/"{ =0, determines the points at
o

which the tingents are parallel 1o the axis of abscissas.
. oy

2L The equation @Y7 )
e

tangents are perpendicular 1o (he

» determines the points of
the cuwrve w which the
axis of abscissas,  ‘Phe lwo last equations also deternine
the cusps, if there are any.

&y

3d. The couition 4 = 0 determines the points of
oL

inflexion,

4th. The cquation l/l:
»

cates a conjugute point,

an maginary constant, indj-

13
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CITAPTER VIL

Of Osculatory Curves—OQf Fvolules.

151. Let PT be tangent to the curve ABP al the point
P, and PN a normal at the same point @ then will P'F
be tangent 1o the circumference of every circle pitssing
through P, and having its centre in the normal PN,

It is plain that the cen-
tre of a circle may be
taken at some point C,
so near to I, that the clr-
cumference shall fall with-
in the curve ADE, and
then every circumference

described with a less ri-

dius, will fall entirely
Wwithin the curve. It is
also apparent, tat the centre may be taken at some point
¢, so remote from P, that the ciecumference shall fall
between the curve APR and the tangent T, and then
every circuniference desceribed with a greater radius will
fall without the curve. Hence, there are two clusses of

tangent circles which may be described ; the one lymg

within the curve, and the other without 1t.
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152. Let there be e
three curves, APRH, /D
CPD, EPF, which Izééf”'-
have a common tan-
geut TP, and a com-
mon normal I’V ; then
will they be tangent 1o
cach other at the point
P. Tudoes not follow,
howcvcr, from this cir-

N

ATe BT R

cwmstance, that cach curve will have an equal tendency 10
eoicide with the twmgent TP nor does it follow that any
Wwo of the curves CPD, EPF, will have an equal ten-
dency to coincide with the lirst curve APR.

It s now proposed 1o establish the general analytical
conditions which determine  the tendency of curves 1o
coincide with each other, or with a common tangent.

Designate the co-ordinates of the first curve AR hy
aand v, the co-ordinages of the second €Pf) by a,
and the co-ordinates of the third L2110 by 27, g0 I we
designate the common ordinate PR Ly iy 47, we shall

then hayve

dy h Fy b 1 AT

fl”': - - e — V/‘,,
1=y da 1 At 1.2 dd ey 1
SR =y DR Py dy g + &o

da’ 1 da’ 12 dat ey

__”',’7//7/ _ﬁ ’/f!‘I/N I - ,i/:g-l/l A - + &e,

nR =y . . B R i
Y dat! | da™ 12

But since the curves are langent to cach other at the
point £ we have (Art. 119),
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(/// :/l/ (]»1//
de dd T

/ 124

y=vy =y"’, and hence,

d= s (1[.{1‘/ &y ) l/z2 N (1/3‘_1( B Ly ) /f‘ b &,

dat da’* Wt de® )23

(l,.—..(/n = (iil—/ — 5/2‘1//> 1/I'~ -} <{/ Y - (/ I/ ) P ”' *: &LC.

da® dall* o d

Now, in order that the lirst cwve APB shall approach
mnore nearly to the second €120 than to the third I20°F,

we must have

d <,
and conseqnently,
I w o
AL L B &ec., < l" - &,
TORSTER Re l*% ay T

in which we have represented the cocflicients 1n the first
series by 4, B, €, &, and the coctlicients in the sceond
by A, I, 7, &e.

Now, the limit of the first menther of the egnality will
always be less than tie linit of the second, when its first
term involves a higher power of /i than the first term ol
the second.  Por, if A =0, the first member will involve
the highest power of A, and we shull have

TR v” P + &e.
Tap s T
and by dividing by /7
I h

e < /f B — &ec.,
112 4+ &, <A + 234 C

and by passing to the lunit
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1
1.2°

0 A

But when 4 =0, we have

Fy Dy

/et

da? dx

and henee, when three curves have a common ordinate, the
first will approach nearer to the second than o the third,
of the wumber of equal differential coeflicients between the
Jerst and second is greater than that between the Sirst and
thivd, And consequently, if the first and second curves
have w1 differential coeflicients which are cqual to
cach other, and the first and third curves only m equal dif-
rential  coeflicients, the first curve will approach nore
nearly 1o the secand than 1o the third.  Hence it appears,
that the order  of comtact of two curves will depend on
the number of corresponding dilferential coeflicients which
are coqual o cach other,

The contaet which vesults from an equality between the
co-ordinates and the first differentinl coellicients, is called
a contact of the first order, or a simple taingency (A 119).
I the second differential coeflicients are also equal 1o cach
other, it is called a contact of the second order. 11 the first
three differential coeflicients are respectively equal to each
other, it is a contact of the third order; and if there are m
differential coeflicients respectively equal to cach other, it

18 a contact of the mth order.

153. Let us now suppose that the second line is only

given in species, and that values may be atteibuted at

pleasure 1o the constants which enter jis cquation.  We
I3*
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f shall then be able to establish between the first and second
P lines as many conditions as there are constants in the
1 equation of the second line. Tf, for example, the equation
of the second line contains two constants, two conditions
can be established, viz.: an equality between the co-
ordinates, and an equality between the first differential
coefficients ; this will give a contact of the first order.
’ If the equation of the second curve contains three con-
I ' stants, three conditions may be established, viz.: an equality
between the co-ordinates, and an equality between the first
and second differéntial coefficients. This will give a con-
l tact of the second order. If there are four constants, we
can obtain a contact of the third order; and if there are
m +1 constants, a contact of the mth order.

It is plain, that in each of the foregoing cases the highest
order of contact is determined.

The line which has a higher order of contact with a
given curve than can be found for any other line of the
same species, is called an osculatriz,

Let it be required, for example, to find a straight line
which shall be osculatory to a curve, at a given point of
which the co-ordinates are z”/, y”.

The equation of the right line is of the form

r y=az+b,

and it is required to find such values for the constants a
4‘ and b as to cause the line to fulfil the conditions,

w:a,"’, y:y", and Z—Z:g—{wl
& i g =
Y ik Redd) =R
3 D + 4\)

I( e e i —— e —— T ———
|
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By differentiating the equation of the line, we have

dy
: dz

=ay

and since the line passes through the point of osculation
. //_.d_?/ -
y—y'=(e—a")
/!

B dy ¥ 555 dy
Substituting for 7y 1ts value 277 We have

/!
y—W=%%@—WL
L _ for the equation of the osculatrix.
In the equation of the circle
‘ a4y = R
dy" il

we find q = __.yW

hence, the equation of the osculatrix of the first order, to
the circle, is

8 iyl == ‘”_//( v 2/
Y LAk ,7/// 4 )’
or by reducing YY"+ xa/ = R,

154. If « and g represent the co-ordinates of the centre
of a circle, its equation will be of the form

(2— e+ (y — 8y = R
If this equation be twice differentiated, we shall have,
(@~ @)do+ (y — B)dy = o,
Tyt (y— sy = o

')
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and by combining the three equations, we obtain,
da? + dy?
&y ’

le® -+ dy®
:j{ (t - ([ty( 2 )’

y—B=-—
X —a

4
R==+ (da? + dy*)*
FEERNTR L Bt R

If it be now required to mike this cirele osculatory o
a given curve, at a point of whic h the co-ordinates are a2’/

y”, we have only 1o substitite in the three last equations,

the values of

dy dy’! 'y oy
de ddT et T e
deduced from the equation of the curve, and Lo suppose, al
the same thne, the co-ordinates 2 and g i the carve 1o
hecome equal to those of w and y in the eirele
If we suppose «”, y''5 10 be general co-ordinates of the
cuyve, the cirele will move around the curve and hecome
weh ol its points i suceession.

osculatory to i, at e
(55, If the civele ()
be osculatory to the curve

I, at the pomt I, we /
\ - I/‘:

shall have

N

IJ
,,(/+w~71&m

for h positive; and

4
qrs/ = O ¥ — T—‘l——j + &(;.,
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for A negative: henee, the two lines ¢s, ¢'s/, have contrary
signs.  "The curve, therefore, lies above the osculatory cir-
cle an one side of the point P, and below it on the other,
and conscquently, divides the osculatory circle at the point
of osculution.  Hence, also, the osculatory circle separates
the tangent eircles which lie without the curve from those
which Lic within it (At 151).

In every oseulitrix of an even order the fiest tern in the
values of gy, /s, will, in general, contain an uneven power
of /5 and henee the signs of the limits of their vidues will
depend on that of 4. The ewrve will therefore li above
the osculatrix on one side of the puint £ and below 1t on
the other; and Lenee, cvery osculalvic of an cven order
will, in: general, be divided by the curoe at the point of
osculation.

156, The fivst differentind equation ol Article 154,

(v —a)dw 4 (y — BYdy ==
may he plced under the form

i

Y—Bo- dy

(0 —a).

When the cirele is made oxcalitory with the curve, the
co-ordiates a0l «# hecome the co-ordinates of the curve,
and the last couiation represents @onormal passing through
the point whose co-ovdinates are 2 and g (Art.122). Hence,

the wormal ilrawn throwsh the potnt of osculation, will

contlain the centre of the osculatory civele

157, Tt was shown in (Art. 155) that the osculatory cir-

cle s, i general, divided by the eurve at the pomt of oscu-




154 ELEMENTS OF THE

lation. The position of the curves with respect to each
other indicates this result.

For, the osculatory circle is always symmetrical with
respect to the normal, while the curve is, in general, not
symmetrical with respect to this line. [f, however, the
curve is symmetrical with respect to the nonual, as is the
case in lines of the second order when the normal coincides
with an axis, the curve will not divide the osculitory circle
at the point of oscutation; amld the condition which renders
the second differential coctlicients i the curve and cirele
equal to each other, will also render the thivd differential
coctlicients equal, and the contact will then he of the third

order.

158, The radius of the osculatory civele
4

( da® 7,*#, llv'l/z )z

Ro= = -

iy
is affected with the sign plus or s, and 1t may be well
to determine the cireumstances under which cacll sign is
to he used.

1f we suppose the ordinide to be posttive, we shall have

(AI‘[. 133)

et and conscquently 'y

negative when the curve s concave towards the axis of
abscissas, and positive when 3t is convex, I then, we
wish the radius of the oseulatory circle to he positive for
curves which are coneave towards the axis of abscissas, we
must eniploy the minus sign, in which case the radius will

be negative for curves which are convex,
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159. If the circumferences of two circles be described
with diflerent rudii, and a tangent line be drawn 1o each, it
1s plain that the civeumference which has the less radius
will depart maore rapidly from its tangent than the eircum-
ference whieh is deseribed with the greater radius 3 and
hence we sy, that its curveture s greater. And gener-
ally, the curvature of any curve is said 1o be greater or less
than that of another curve, according as its tendency to
depart from its tangent is greater or less than that of the
curve with which it is compared.

160. The curvatare is the smne at all the points of the
same cireumference, and also in all eircnmferences deseribed
with equal radil, since the tendency to depart from the tan-
gent is the same. T different circumferences, the curva-
ture is measured by the angle formed by two radn drawn
through the extremities of an arc of a given length.

Let v oand #7 designate the radii of two circles, « the
length of a given are measured on the circumlerence of
cich; ¢ the angle formed by the two radii drawn through
the extremitics of the are in the first cirele, and ¢ the

angle formed by the corresponding radii of the second.
We shall then have

260°
R oo ot 3600 : ¢, c :§6() .

hence, -
2wy
also,

00
2xr 1 a :: 360° : ¢, hence, c’::EP—O—(f;
2wy’
and conscquently
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that is, the curvature in different circumferences varies
inversely as the radii.

161. The curvature
of plane curves is meas-
ured by means of the
osculatory circle.

If we assume two
points P and P, either
on the same or on dif-
ferent curves, and find
the radii » and »/ of the circles which are osculatory at
these points, then

1 .
71
that is, the curvature at different points varies inversely
as the radius of the osculatory circle.

The radius of the osculatory circle is called the radius
of curvature.

1
curvature at P : curvature at P/ :: — :
r

162. Let us now determine the value of the radius of
curvature for lines of the second order.

The general equation of these lines (An. Geom. Bk. VI,
Prop. XII, Sch. 8), is

y’ = ma + na?,
which gives,

_ (m42na)dx _ [4y*+(m+2na)]do”
dy—_—éy—’ da? + dy* = ey ’

Py= 2ny da? —(m+2nx)dedy _(4ny*—(m+2na)’) da®
= T - v 3
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Substituting these values in the cquation

3
R=- dad’y
we obtain
3
[4 (me + na®) + (m -+ 271:1:)2]?’

P

R =

whicl is the general value of the radius of curvature in
lines of the sccond order, for any abscissa .

163. If we make x =0, we have

that is, in lines of the second order, the radius of curva-
ture at the vertex of the lransverse axts is equal to half
the parameter of that arts.

If be required to find the value of the radius of curva-
ture at the extremity of the conjugate axis of an ellipse,

we make (An. Geowm. Bk, VI, Prop. XXI, Sch. 3),

oI I
M= g and  ax=A,
which gives, after reducing,
AZ
1\) DI eee—
¥}

hence, the radius of curvature al the verlex of the conju-
gale aris of an ellipse is equal lo half the parameter of
that axis.

In the case of the parabola, in which » =0, the general

value of the radius of curvature becomes
11

]
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3
ud )

2t

161 11 we compare the value of the radins of curvitore
with that of the normal line (o in (Art. 113), we shall
have

(normal )t

l ?
—
1

R

that is, the rudivs of curvatue ar any potat is equal (o
the cube of the wormad divided by half the parvameter
squared :and henee, the vadi of curvature at different
potals of the saue curee ore lo coclo other as the cobes of

the correspoie G norials.

-

Of the Livolutes of Curves.

165, I1 we cuppose a cir-
cle o move :l!t»ng‘ anyeurve,
s AP wd 1o be oseu-
latory to it at each of s

polits, i suceession,  the

curve AN is ealled the -

volute ClUry e and the curve

Core deseribed by the N

T [RUENEA
centre ol the n,«il‘llllllul‘_\‘ Clr- \
cle, s eadled the  erolute i\\l
Curve. P

166. The co-ordinmes of the centre of the osculatory
circle, whieh have been represented by and p)oare con-

st for given values of (he co-rdinmtes o oand 7 of the
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involute curve, but they become variable when we pass
from one point of the involute curve to another.

167. We have already scen that the osculatory circle 18
characterized by the equations (Art. 154)
(@ —af 4 (y— o =1 (1)
(@ — a)da + (y — B)dy =0, (2)
da? -} (/yz -+ (I/ — ,3)([’{'1/ = 0. (3)
If it be required to find the relations between the co-
ordinates  of the mvolute and the co-ordinates of the
evolute curves, we must differentiate equations (1) and (2)

under the supposition that « and 8, s well as @ and 7,

are varinbles.  We shall then have
(o — )i - (g — By - (w— w)da—(y — B)dp = Rd R,
dat -y | (g )y - deda — dpdy = 0.
Combining these with equations (2) and (3), we obtain

ey —P)dB— (x-—a)da = RAR, (1)

—dady —dpdy =0,

m - .
Fhe last equation gives

dp o .
i R
But equation (2) may be placed under the form
dr :
yops e o)

which represents a normal to the involute (Art. 122), and

: - . du . d
which becomes, by substituting for — »/-’ its value e

dy da’
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dg .
¥y—R= gl;(l —a), (6)
_dp

or b—y="—2)

=

This last is the equation of a straight line passing
through a point whose co-ordinates are and w, and tan-
gent to the curve whose general co-ordinates are « and B
hence, a normal tine to the involute curve is tangent to

the evolute,

165, Tt is now proposed to show, that the radins of cup-
vature and the evolute cnrve have cqual differentials,

Combining equations (2) and (5 we obtlain
8 ¢4

(=) (y=a), ()

or by squaring hoth members,
M'.

i 32 ol .
("" - “) o (I/ - /3) ;/ﬁJ »

combining this last with equation (1) we have

2 /8t . R ]
My —pp = (3)

Combining equations (1) and (7), we have

| Jo
___(y__ﬁ),/ﬁ A,(,/ — ‘@)Lt P [\)1/1\’,
- B
(da | dgt)

or _T—(‘q_ﬂ):“‘lh);
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or by squaring both members

(e - U () —py = P (ARY

Dividing this last by cquation (=), meber by member,

we have
(dRY o da’ g’

or AR = Vdat | E

But if s represents the are of the evolute eurve, of which

the co-ordinates are « and g, we shall have (Art. 128),
ds = '\/tzr;f-‘“r:li dp* ,

henee, AR =ds;
Uit is, the differential of the radius of curvature ts equal
to the differential of the are of the coolute.

169. 1L does not follow, however, from the lust equation,
that the radius of curvature is equal to the are of the evolute
curve, hut only that one of them s equal to the other plus

or minus a constant (Art. 22).  Henee,

R=s+4a

1s the form of the equation which expresses the relation

between them.
i

14*
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If we determine the radii
of curvature at two poinls of
the mvolute, as P and F,
we shall have, for the first,

> 8
R=s+uq,
and for the second
/ ./ .
R = 4 ¢,

hence,

IC’ — 1\) el S/ — & == (AY, P \
’ (o

and hence, the differcnce beticeen the radis of curvatire at
wny two points of the (noolute 1y ciual to the part of the
evolute curor ntereepted between them.

170. The value of the constiot « will depewd on the
position of the point from whiclh the are of the evolute
curve Is estimated.

I, for exarnple, we tike the radins of corvitare for lines
of the sceond crder, and estimate the are of the evolute
curve from the point at which it mects the axts, the value

. . |
of v will he 0 when = oo (AL 162): henee we

shall have
1 1
——m=04a or a - —u ;
%) “)
2 2

and for any other point of the curve

I
s+ ;-
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Either of the evolutes, £'14,
L, F'E, or IE, corres-
ponding 1o one quarter of the
ellipse, is equal to (Al 169) [

A B

B A

Al
171. The evolute curve tukes £

its name from the connexion which it has with the corres-
ponding involule.

et €C7C7 he an evolute
curve. AL C draw o tan-
gent AC, and make 1t equal
to the constant « in the equa-

tion
R =5 | u.

Wrap a thiend  ACC/

around the curve, and fasten

1t at any polnt, as (7. :
- N
(1% f. - '\\
Chen, if we hegin at 4, w

v\\
1)
ll“([ llll\\‘“ll) ar ("l,'(l/lVf ‘,}l(‘, (

thread, it will tike the positons PC 7Y &, and the

pomt A will deseribe the involute A PIY 2 for

PO —AC=CC and PO — AC = COCY, &e. ...

3
T

172. The equation of the evolute may be readily found
by comhining the equations |

v —p— da | dy? o dy(da*+ dy*)
e

with the equation of the involute curve,
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st Find, from the cquation of the involute, the values of

dy

ofar

and  dPy,

and substitute thenr in the two last equations, and there
will e obtned two new cquations involving «, 6, 2@ and .

20 Conthine these equtions with the cquation of the
mvolute, and climimate @ and y o the resulting cquation
will contain «, g, and constants, and will b the cynntion

of the evolute ciove.

173, Letus take, as an exanple, the connmon piritholi

of which the cogution s
y* oz,

We shall then have

dy . nde?
—e = e iy = — T

1‘ ‘l/l ‘,

4y ~+_:{/_112> Ay bty 4y
4 \I/Z - P —

sty

w* I

and by ohserving that the value of » — « s cqual to that

Lo /
of y—p8 multiplicd by — %/, we have

da
42+ m®
&L —a = ‘
2
hence we hiave,
470 2t m
—B = /; and @ —e= =L _ ",

0 e 2
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substituting for y its value in the equation of the involute
RN
Y =m x*,
we obtain

3
40 m
- b

2

m

and by climinating @, we have

B’ = 16 ¢, Lm)”
T QTm 2 ’

which is the equation of the evolute.
If we make g =0, we have

! ”
ooz —— L)
2 b
and hence, the evolute mecets the

axis of abserssas ata distance lrom

the origin equal to half the prraun-
ctev. I the ovigin of co-ordinates
be wansferied from A to this

. 2
pomt, we shall have ¢

and consequently

. 16

- w3,
27 m

The cquation of the curve shows that it is symmetrical
with respect to the axis of abscissas, and that it does not
extend in the direction of the negative values of /. The
evolute CC7 corresponds 1o the part A1 of the involute,
and CC7 10 the part A1,

!
|
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CHAPTER VIIIL.

Of Transcendental Curves—Of Tangent Plancs
and Norinal Lines to Surfuces.

174. Curves may be divided into two general classes

1st. Those whose equations are purely algebraie s and

2dly. Those whose cquations volve  liuscendental
guantities.

The first class are called algebraie cnrves, and the
sccond, transcendental curves.,

The propertics of the first class having beea already
examiued, it only remains to discuss the properties of the

transcendental curves.

Of the Logarithmic Curve.

175. The logarithmic curve takes its name from the
property that, when referred 1o rectangulir axes, one of
the co-ordimates is cgpad 1o the logarithm of the other.

If we suppose the logaruhms to be estimated in parai-
lels to the axis of Y, and the corresponding numbers to
be laid off on the axis of abscissas, the equation of the
curve will be

y = lr,



DIFFERENTIATL CALCULUS. 167

176. If we designate the

base of g system of Joga-

. R P
rithins by «, we shall have, ! P
(Alg. Aw. 241) A :
- oy I
of sy

and il we change the value
of the base « 1o o/, we shall
Livve

11 plain, that the sime value of a, in the two equations,
will give different values of yy and henee, eoery system of
locirithos il oive different loswavithmic curoe.

Iowe ke y 20, we shall have (Alg. Art. 210)
a by and this relation heing mdependent of the hase of
the system of Togarithis, it follows, that eeevy logarithmie
curve ol intersect the aais of wanbers al « (/I,..\'/,(Ill(‘f?‘/jl'()llt
the crivip cytial 1o il y.

The mlu.llinn

Yoo o
(LA

will enable ws o deseribe the cwrve by pomnts, even with-

ont the aid of W table of logariths.

For, il we muke

o

*

y 2 0, Yors R Yy = -.:lr, &

{
w$

we shall find, for the corresponding values of .,

a =1, o y/u, a s w /iy a= e &e.
177. 1 we suppose the Lase of the system of Togarithns

to be greater than unity, the Togrwithms of ] ninbers less -
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than unity will be negative (Alg. Art. 239); and therefore,
the values of y corresponding to the abscissas, between the
limits =0 and @ = Ak =1, will be negative.  Hence,
these ordinates are laid off below the axis of abscissas.

When 2 =0, 4 will be infinite and negative (Alg. Art.
247).  If we make = negative, the conditions of the equit-
tion cannot be fulfilled ; and hence, the curve does not
extend on the side of the negative abscissas.

178. Let us resume the cquation of the curve
y = lr.

If we represent the modulus of the system of logaritlins
by 4, and differentiate, we obtain (Art. 56),

l

dx
dy = A—;:—,
d
or —i/: /1
dr 2

But %{ represents the tangent of the angle which the
tangent (l/inc forms with the axis of ubscissas : hence, the
tangent will be parallel to the axis of abscissus when
x = o, and perpendicular to 1t when @ — 0.

But when @ =0, y = — «; hence, the axis of ordinates
I3 an asymptote to the curve. I'he tungent which s
purallel to the axis of X is not an asymptote: for when
x=w, we also huve y= o,

179. The most remarkable property of this curve he-
longs to its sub-tangent T°R’, estimated on the axis of
logarithms.  We have found, for the sub-tangent, on the
axis of X (Art. 114),
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dr
TR = —y,
ly

and by simply changing the axes, we have

"—5:1;1::* A

..

TR -

hence, the sub-tangent s cqnal o the modulus of the
system of logarithus from which the corve is constructed.
In the Naperian system M == 1, and henee the sub-tangent
will be cqual to 1= AL,

Of the Cycloid.

1500 W a cirele NPG e volled along w straight line
ALy any point of the cireuniference will deseribe o carve,
which is ealled o cyclord. The cirele NPGis ealled the
generating civele, wl §* (e generaling poind.

Feis plaing that in eacl, revolution of the generating cirele
anequad curve will he deseribed 3 and henee, it will only
}Jl) Il(f('('sﬁ}“'y Lo ('.X;ll“i“(: I,lllf ])]'()l)(fl.lri"h‘ ()1. [ll(‘. curye
APDBL, deseribed inone revolution of the generaling cirele,
We shall therefore refer only to this part when speaking
of the eyeloid.

181 If we suppose the point 2 to he on the line 4 L.

at A, i will be found at some point, as L, after all the
15
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AR N M n L

points of the circumference shall have been brought in
contact with the line AL. The line AL will be equal to

the circumference of the generating circle, and is called

the base of the cycloid. The line BM, drawn perpen-
dicular to the base at the middle point, is equal to the
diameter of the generating circle, and is called the awis of
the cycloid.

182. To find the equation of the cycloid, let us assume
the point A as the origin of co-ordinates, and let us sup-
pose that the generating point has described the arc AP,
If N designates the point at which the generating circle
touches the base, AN will be equal to the arc NP.

Through N draw the diameter NG, which will be
perpendicular to the base. Through P draw PR perpen-
dicular to the base, and PQ parallel to it. Then, PR=NQ
will be the versed-sine, and PQ the sine of the arc NP.

Let us make

ON =7, AR =a; PR=NQ=y,

we shall then have

PQ=+2ry—y, a«=AN—RN=arcNP-PQ:
hence, the transcendental equation is

& =ver-sin~'y — VRry — i’
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183. The properties of the cycloid are, however, most
casily deduced from its differential equation, which is
readily found by differentiating both members of the trans-
scendental equation.

We have (Axt. 71),

i
d(ver-sin~'y) = _”'/__,
Very—y'
d( ‘/m—-—) 1(]:/——1/(/;/ :
V2ry—y*
hence,
. g rdy (h/ — 1/([1/
Vary—y ViIry—y"
or ) O ... o @ =,

Vary—y
which is the differential equation of the cycloid.
184. If we substitute in the general equations of (Arts.
114, 115, 116, 117), the values of da, dy, deduced from
the differential equation of the cycloid, we shall obtain the

values of the normal, sub-normal, tangent, and sub-tangent.
They are,

normal PN = v/2ry, sub-normal RN = v 2ry — 7,
o YVoy i’
tangent PT = LY 5 = sub -tangent TR = L
Vary —y Very —y
These values are easily constructed, in consequence of
their connexion with the parts of the generating circle.
The sub-normal RN, for example, is equal to PQ of
the generating circle, since each is equal to +/2ry —3*:
hence, the normal PN and the diameter GN intersect
the base of the cycloid at the same point.
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Now, since the tangent to the cycloid at the point P is
perpendicular to the normal, it must coincide with the
chord PG of the generating circle.

If, therefore, it be required to draw a normal or a tan-
gent 'to the cycloid, at any point as P, draw any line, as
78, perpendicular to the base AL, and make it equal to
the diameter of the generating circle. On ng describe a
semi-circumference, and through P draw a parallel to the
base of the cycloid. Through p, where the parallel cuts
the semi-circumference, draw the supplementary chords
P, pg, and then draw through P the parallels PN, PG,
and PN will be a normal, and PG a tangent to the cycloid
at the point P,

185. Let us resume the differential equation of the
cycloid

de = i . < o ,:’
V2ry —y* il ey A
which may be put under the form 0
i Sy Rqu’”
dy _ v2ry— =1/2_n
dw— y y AL
If we make y =0, we shall have e, -
d .
d—w=w,

and if we make y = 27, we shall have




DIPFERENTIAL CALCULUN, 173

henee, the tangent lines driwn to the cycloid at the pomts
where the curve meots the hase, are perpendicular to the
Bise; and the tangent deawn through the extrenity of the
greatest ordinate, 15 parallel ty the base,

Is6i. If we differentiate the equation

g yidy

\/53/'»// )

regarding de as constant, we obtain

. Ty (rdy — yd
O~ (yly - dy?) Y // iy el Cre I/ - II) EN
\/ ry -y’

or by reducing and dividing by 4,
O =(2ry — ")y + rdif,
whenee we obtam
4/"’»// o 1':///i"A:;
2y

and henee the cycloid is concave towards the axis of

abserssax (Art 133).
N7 o find the evolute of the eveloid, Tet us fivst sub-

stitute in the general value of

, (da? - 74/// )
R= ==,

the value of Py found in the last article : we shall then

have
Il. 1 o
= 2%(ry)s 22y

henee, the radins of corvature: corresponding 1o the ex-

trennty of any ordiate y, s cquad o double the nonmal, |
' 15,4
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.

The radins of curvatie is 0 when i =0, and equal to
twice the dimmeter of the generating eircle for Yo 2y
Lience, the Tength of the evolute curve Trom 4 16 A7 is
cyual to twice the dinneter of the generating cirele,

Substituting the value of 'y in the values of 4 —g,

r—a (Art, I72), we obtain

y—8:-2y, a,'—f-x-._—i!\/‘Jr//r
hence we have
y=—8, R A

Substititing these values ol oy and o 0 dhie tanscen-

dental equation of the eyclod, we e

aver-sinT o g o us gl

which is the trnscendental equation ol the evoluie, re-
ferred 1o the primitive origin and the Pt e ases,
Lt s now trans-

fer the orivm ol co-

ordinatestothe point "/
Ay and chanee //'
the same time the o1
directionof the poxsi- l

tve ahscissas s that !

s, instead ol estinn-

ting them hrom the
feft o the rieht, we witl estimonte theny fronn the right
to the Teli Lt us decionate the co-ordinates of the

evolute, referred (o the new aves A7 47V, hy a' and g,
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Since A7X - AM - the semi-cirenference of the gene-
rating cirele, vhich is equal to om, we shall have, for the
abseissa AR of any point 17,

AR ym e, hence,  emmrwm o
and for the ordinate, we shall have
RP =g R =P — (=) 2B,
llcll(t(‘, F) L2 [5’} Or —p Oy — ﬁ/.
Substituting these values of @ and g in the transcen-

dental cquation of the evolute, we obtain

/

or o cymoover-sinT (2 oo g \/.3775’ — ﬂ'“_

Buvthe ave whose versed-sine s 20 - 8, 15 the supple-
ment of the are whose versed-zine is 8, hence

/

ooty ! ' y.oal i
a - over-sim £ — \/2/,6 £,
which 15 the equation of the evolute referred to the new
origin iund new axes.
But this equation s of the same form, and involves the

sane constants as that of the involute: henee, the evolute

illld .lll\'l]lllll‘, are (Elllllll CUrves,

Of Spirals.

IS A spred s a curve deseribed by o point whicl
moves along o vight e, according to my o whatever,

the hine having at the same tme aouniform aneular motion.
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Let ABC e astraight
lue which 1s to he turied
wniforinly  wound  the
pomt A, When e
motion ol the fine be-

gins, el us suppose

poinl o wmove from A
AP

along the line in 1he Y

direction ARC. When ////\

the line tikes the posi- 7 Tl
tion ADI 1he point will

have moved along it 10 some point as 1)) and will have
deserthed the are Aal) of the spirale When e ine
tithes the poxition A D1 the pomt will have descrhed
the curve Ao DY, and when the Hne shall liave comple-
ted an entire revohion the point witl have deserilied the
carve Aa DD [,

The pomt A, whout which the rioht line MOVes, 15
culled 1l pole s the distces A ), AN AR are ealled
vadivs-rectors, and i the revolutions of 1he vidis-vector
are contmued, the generating point will describe an i)y-
definite <piral. "The parts AaDD' B, BEFC deserihed
cach revolution, are culled spires,

=90 1 with the pole as acentee, aid B, the distanee
passed over by the vencrane potnd e e divection of e
radisvector dueimg e st revolution, as o radins, we
desenbe the corcwmlevence BEE the anoilar motion of
the raciis=veetar abont the pole o, tay he mcasared by
the ares ol this corele, extimated rom 12,

li we desionate the rudius-vector by v and the measur-

Iy are, estided frong 13, by 4 the relation hetween
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and ¢, may in generd be expressed by the equation
=l

i which z depends on the law according 1o which the
generating puibl moves wong the radius-vector, and o« on
the relaton which exisus hotween a given value of . and
the carresponding valae of 1.

190. When # is positive the spirals represented by the
cquation

U - f,",

will pass through the pole A, For, if we make ¢t =0, we
shall have w = 0.

But if 2 is negative, the equation will hecome

-n {"
Wzl or U=z
[A
m which we shall have
we o for L= 0,
and 1w, O for RNy

henee, incthis class of spirals, the first poxsition of the
geoerating pomt is at an inlinite distiee frone the pole
the pomt will then approache the pole as the vadins-vector
revolves, and witl only reach it after an infinite number of
revolutions.

TOL I we make 2 == 1, the equation of the spiral be-

comes
woal,

If we designate two different radius-veetors by o' and

w”, and the corresponding arcs by ¢ and ¢/) we shall have

W= al', and W = al”,
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and consequently
p W o s

that is, the radius-vectors are proportional to the measur-
ing arcs, estimated from the point B. This spiral is
called, the spiral of Archimedes.

192. If we represent by unity the distance which the
generating point moves along the radius-vector, during one
revolution, the equation

u=at,
will become
1=at, or 1x r3 =t
a

But since t is the circumference of a circle whose
radius is unity, we shall have

.;_ =2,  and consequently, = —1—

198. If the axis BD, of v
a semi-parabola BCD, be ’
wrapped around the circum- |
ference of a circle of a

given radius 7, any abscissa,
as Bb, will coincide with f
an equal arc BY, and any &
ordinate as ba, will take the '
direction of the normal AV/«/. \m __’/"'
The curve Bd'c/, described
through the extremities of the ordinates of the parabola, is
called the parabolic spiral.

The equation of this spiral is readily found, by observmg

that the squares of the lines ¥/a, ¢ ¢/, &c., are propor-
tional to the abscissas or arcs BV, Be,
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1w designate the distances, estimated from the pole
A, by u, we shall have /¢’ =u —r: hence,

(w—r)=2pt,
is the equation of the parabolic spiral.
If we suppose =0, the equation becomes
W= 2Pt.
If we make n= —1, the general equation of spirals

becomes

u=at", or Ut =a.

This spiral is called the hyperbolic spiral, because of the
analogy which its equation bears to that of the hyperbola,
when referred to its asymptotes.

194. The relation between w and ¢ is entirely arbitrary,
and besides the relations expressed by the equation

W=,
we may, if we please, make

t =logu.

The spiral described by the extremity of the radius-vec-
tor when this relation subsists, is called the logarithmic
spiral.

195. If in the equation of the hyperbolic spiral, we
make successively,

&e.,

’ =

1
‘—i,

we shall have the corresponding values,

u=a, u=2a, u=23a, u=4a, &ec.
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Through the
pole A draw AD
perpendicular to
A, and make
oequal 1o o
then through D

driow a parallel
to AL From
any pomnt of the
spiral as P dew LA perpendicidar to AL, we  shall
then have

DPM —wusin MAD - usine,

. ) . a
If we substitute for % its value — we shall have

LY

PAM gl
{

Now as the are ¢ diminishes,the ratio of '—ﬂ/“-[ will ap-
proach to unity, and the value of the ordinate PM will
approawch to « or CM: henee, the line De; approachios
the curve and becomes tangent to it when ¢+ 0. Bt
when ¢ =0, w=w; henee, the line DO §s an asymptote
of the curve.

196, The are which measures the angular motion of the
radins-vector has bheen estimated from the right to the e,
and the vadue of £ regarded s positive. 1 we revolve
the radius-vector in a contrary direction, the nmeasuring
arc will be estimated from Teft to vight, the sign of £ will
be changed 1o negative and a siilar spiral will he de-
scribed. The line DC7 is an asymptote 1o the hyperbolic

spiral, corresponding to the negative value of .
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197. Liet s now lind a general value (or the subtangent
of the spivals.  The sublungent is the projection of the
tangead ona line drawn through the pole and parpendicidiar
Lo the cadins-victor passing Ueowgh the point of contuct.

The equation of the spiads may be wiitten ander the

form

we= [,

it which we may suppose £ the independent variable, and
s fiest differentinl constant.
Lot 40 1 be the radins of
the ueaming civele, P77 tan-
gentto the spreal at the point P,
and AT drawn perpendicular to

the radins-vector A2, the sub-

taneent. \ ;
Take wy other point of the S \\

spiral as 1Y and diw AT

Through A draw AT perpen-

diculir to A5 draw the sccant

TP About the centre 4

deseribe the are PQ, and draw

the chord £2QQ. A

From the similar trinngles - QPP AT 1, we have

PQ - QU o AT L A
QI Al
hence, rq S
But when we pass to the Timit, by supposing the point
P’ to comeide with £, the seeant 7711 will become the

tangent 7y and AT will become the subtimgent AT
16
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But under thix supposition

the awre VA will hecome equal

to dt, the awre PPQ to the chord Q
PQ (At 128), AP 1o 0, and e ,\/<\\)
\ NNy ES /
the lm% (1 1o du. ‘ ; < /\
To tuud the vatue of the are A\
PQ, we have o \
. \
1 NN 0 AP @ we PQ;
heuee, .
L o:ode o uw o oare PPQ, \
N
and Q= wdt. M

Substituting these vadues, wd passing 1o the lnt, we
have

e 0

wili jl"T'

henee, we have the subtingent

Ap = e
e

198, If we find the value of »* and du from the gen-
eral equation of the spirals
u == at”,
we shall have

, «
AT = —+1,
n



DIFFERENTIAL CALCULUS, 183

In the spiral of Archimedes, we have
n=1, and == —3;

[,2
Lenee, AT = —.
oy

If now we make (- 27— circumference of the mea-
suring circle, we shall bave
‘ AT = 9x = circuniference of measuring cirele.
Afier e revolitions, we shall have
{ oz Lo,

and consequently,
A Qw2

U 1, the sublangeat, after s reolutions, o cqual 1o
m tines the circiuference of the cirele deseribed aeidh
the radivs-vector. "This property was  discovered  hy
Avehiimedes,

199, T the hyporbolie spiral == —1, and the value of

the sublagent becomes
oy .
Al —u;
that is, the subtangent is constant in the hyperbolic spiral.

200. 1t may be remarked, that
y )

AT wdt

AP T du

expresses the tangent of the angle which the tangent makes

with the radius-vector.
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I the fogarithmmic spiral, of which the equation is

t=logu,

e
we have dt oA
u
| AT wdt
wenee - o 24
’ Al elue ’

that is, in the Togarithimie spirad, the angle Torned by the
tangent and the radins-vector passing thronsh the poiint of
contaet, s constant; and the tangent of (he anerle s equald
to the medulus of the system of logaeithings, 107 s e

Naperian logarthn of oy the anole will he couad to 45

201. The value of the taneent i the spocids i

L ’\/“['11 | .1'[':{ //'\/l | 1/'/{ .
i’

202, To find the differential of the wre, which we will

represent by 2 we have

I)I)/ \/(‘J/;"' i (e/):f;

or, by substituting for QY and PPQ their vidues, and

passing to the lunit, we have

dz = \/(/‘u::”]r WP,
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203. The dilferentinl of the
area ADL when referred 1o the
polar co-ordinites, is not an cle-
mentary rectangle as when re-
ferred 1o rectangulir axes, hut
15 the clementary seetor A 7217,

The it of the rmdio of the
sector A 2P with the are NN/,
will he the saume as that ol
cither of the sectors A4 17Q, )
AL betweon whieli 1t s \\ \

contidned, with the same are \ N

. L . o
NN Hlence, if we designate !
the arca by s, and pass Lo the limit, we shall have
ds AP PQ whdt
—— e - or ds=—
d 2NN 2 2
which iy the differential of the area of any seament of

spiral,

Of Tangent Planes and Normal Lines to Surfuces.

2000 | e Py, z) 20,

be the coauation of wsarfaee.
[ through iy point of the surface two planes he passed
& Yi
intersecting the surface in two curves, and wo strdght
fines e driovn respectively tangent to each of the enrves,
at their common point, the plane of these tigents will be
ineent Lo the surfee,

205 Let us designate the co-ordinates of the point at

whieh the plane i o be tangent by 27 g7, 27,

Ie?

}
i
I
k
i
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Through this point leva plioe be passed paaallel o the
co-ordmate plie Y Z0 This plane will intersect the
surfuce moa curve, The cquations of wostrghit Tme tan-
gent to this curve, at the pomt whose  co-ordinates  arc
a2 e
l/»l/ . i
oz SRR
the first cquation vepresents the projection of the tangent
on the co-ordinate plane 2.\ and the second s [rojecs
tion on the co-ovdiate ploe Y24 (AL Geon B TN
Art. 70y,

Flironeh be same pormt fet o plane e passed paendle] o
the co-ordinate plane 24, and we shadl lise for the

coyualiogs of o tanoent 1o the canve

i //,« 7 e T
vyt e e e

"I'he coctlicient -’/// represents e tinesnt ol the angle
il=

whicl thie propection o the first tivoent o the co-ordinaie
plane Y Z nakes with the avs of 7205 and ihe coctlicient
e . .
i yepresents the tangent of the anele which the projection
of the =econd tneent on the plioe ZX ks with the
axis of 7 (An. Geonse Bk VI, l'nu[». ).

But these coctherents may be eapressed in functions of
Ve siwrlaer and the co-ordinates ol s pomnts. For, we
Bave

7 B NV R | N
and tf we suppose o constt we sadh hinve: (At X7

du il

il iy dz 0

/

4/_// o
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du
. dy dz
hence, I
r/‘//i

and 1 we supposc ¥ constant, we shall hind, in o similac
Xll«'lnll(?l‘,

i
e dz
Az de?
I/‘l,'

henee, the equation of the projection of the first tangent on
the plue of Y2 bhecones

dn

o

y—y' =

(Al
du (= =273

.4///7

and the equation of the projection ol the second tangent
on the plane of 2.\ is

du
.
N S D72
e i (= 7).
f/AI

e : . :
Che equation of o plane passmge throueh the point whose

co-ordinutes are 27, 70 2 s ol the lorm
» Y

A (1 —a’"y | lf(y — _1//) VO -2 L0,

in which /, will represent the taeent of the anole which
)

the tviee on the co-ordinue plane Y2 makes with the

. - @ . .
axis of Z and | the tangent of the ol which he

;

trace o the plane ol ZX makes witly the axs of 7

,
‘.
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But since the tangents are respectively parallel to the
co-ordinate planes YZ, ZX, their projections will be
parallel to the traces of the tangent plane : therefore,

du du
¢ T - « Wy
f_—@-’ heﬂce, B-—-—d—_uc,
b dy dz
du du
‘ c dz dx
“: A=—-E, hence, A:——(EC.
il da dz

Substituting these values of B and A in the equation
| of the plane, and reducing, we find

d d d
| s e 2V~ @+ N By~ )=,

. which is the equation of a tangent plane to a surface at a

LIl E point of which the co-ordinates are a”, y”, 2", If we

{1 neglect the signs of the constants 4, B, C, which enter

| | into the equation of the plane, the equation may be written
‘ under the form

du du du
{4 b d S e R e A
(z=2 )t @—a") =+ (y~y )dy—o.

% | 206. A normal line to the surface being perpendicular
[ to the tangent plane at the point of contact, its equations
' ! will be of the form
1| i
i ‘ pegins. dx

| @
i dz

du
dy

(2—2")  y—y=—-(z—2")
dz
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ELEMENTS
INTEGRAL CALCULUS.

Integration of Dufferential Monomials.

207. The Differential Calculus explaing the method of
finding the differential of a given function. The Integral
Calculus is the reverse of this. It explains the method
of finding the function which corresponds to a given
differential,

The rules for the differentiation of functions are explicit
and direct. Those for determining the integral, or func-
tion, from the differential expression, are less direct and
are deduced by reversing the process by which we pass
from the funetion to the differential.

208. Let it be required, as a first example, to integrate
the expression.

a"dax.

We have found (Art. 32), that
d(@"*' )= (m +1)a"d,

Ao Ml
whence, 2y = ——— = ( \>,
1 m+1
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et
&

and consequently R
- 41
is the funetion of which the differential is o dir.
The integration is indicited by placing the character f
before the differential which is to be integrated.  Thus,
we write

Py

Sartda -y

e -1

from which we deduee the following rule.

Lo dntegrale o monomial of the form x"ds, augmeat
the eoponrent of the variable by waity, and divede by the
ca ponenl S0 inercased and by the differentiaol of e
variable.

209, ‘The characteristic [ sionifies anlegrol or som.
The word sim, was eniploved by those who first weind e
differentind and integral caleulus, and who regaorded the
integral of

adr
as the s of all the products which arise by multiplyig
the wth power of oy for adl values of oy by the con-
stant .

. . . o
210, Let it beacquired to integrate the expression -~

We have, from the last rule,

3+t

e - . a v 1
f» -z /(/.1"1,' o e —_ e
at —3 1 Qat

In a similar manncr, we find

2 + 1 & 5

2 V3 P DY

i TR L LI 1
fclx\/.l, __fd, (,I/J——Tz——— o=

5 5
373
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2L 1t has been shown (Art. 22), that the differential
of the product of a variable nliiphied by a constant, is
equal to the constant multiplicd by the dilferential of the
vartable, Henee, we may conclude thaty the inteoral of
the product of w differential by a couslunt, is cyual Lo the
constunt gpulliplicd by the dntearad of the differential ;
that ix,

Lo
i

/.r/«:""(/J' 7] /.;1"‘”4/.;,' T

’ : i {o |
Henee, o the capression Ao be fuleavated fave one or
wore coustant fuctors, they may be placed us fuctors with-

ol ihe sion of the tnlegral,

212,

I has also been shown (Art, 22), 1hat CVery con-
s quantity connected with the variable by the sign
phis or minus, will disappear in the differentinon ; and
hence, the differential of « o™, 1s the sane as that of
AN ™ Consequently, the sume dilferential
ay answer tooseveral integral funetions differing from
each other i the value of the constant, e,

i passing, thevefore, from the dilferentinl 1o 1he integral
or function, we must annex 1o the first mtegral obtained,
eonstt derm, and then find such o vale for this term
as will charneterize the particular integral sought.

For example (Art. 94),

!
r a, or  dy=ada,
i )

is the differential cquation of every straight line which
makes with the axis of abscissas an angle whose tangent
18 a.  Integrating this expression, we have
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j(/l/ i (IVA/Vl/‘L‘,
or VRN

or finally, y o an Ol

If now, the required line is to pass through the origin
of co-ordinates, we shadl have, for
20,y =0, and consequently, € 0.
But if it be required that the line shall interseet the axis

+ b, we shall

of ¥V at a distance from the origin equal to
have, for

x =0, Y= + b,

and consequently, €= b

and the true integral will he
y o h.

it were required that the right line

If, on the contrary,
we

should interseet the axis of ordinates helow the arigin,
should have, for

20, y=—0h and consequently, €= — h;
and the true integral would be

y = — 0.
913. Tt has been shown (Art. 95), that
ado - ydy 0
is the differential equation of the circumference of a circle.

By taking the integral, we have,
Sade+ fydy =0, or 2+ ¥y =0,

or finally, 4P+ C=0.
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it be requived that this integrad shall represent a given
circuference, of which the mdius is £, we shall have,
by makieer

g — e R

R A R A A (&

The constant € which is annexed to the (st mtegral
that 15 obtained, is ealled an arbilvary cons and, because
such wovalue is 1o be attrilbuted to ioas will canse the
required integral to (ulhil given conditions, which may he
tposed on i at pleasure,

The value of the constant must he such, as 1o vender
the cqualion frue for cecry value which can be atlribuled

Lo the variables.

2. There is one case to which the foruula of Art, 208
does not apply. Ttis that in which m = — 1. Under this

supposition,
B NA al
f;l,"“([.),' B e T T P

But when -1,

Jartda s fa e =

and [ili loga - €. (Art. 57).

@

215, Since the differential of a funetion composed of

several terms, is equal to the sum or difference of the djffe-

rentials (Art 27), it follows that the integral of a ditferen-
17
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tial expression, composid of =everad tenmns, s equald to the
cun or difference of the mteorals taken separately. For

example, if

/n/.l‘ .
duzzade — "7 anyada, we have
v
. : byl -
jl/l/ :'/(111/‘1‘ S b \/«I, 1/‘1'), and
1 4 PO
W= e - R CE A ('
2 D

216. Livery polynomial of the form
(A b | e {- &e)rda

in which « is a positive and whole number, may be inte-
grated by the rule Tor monomials, by fiest radsing the poly-
nomial to the power indicited by the exponent, and then
multiplying cach term by da.

If, for example, we nuhe w2, and cmploy hut two
terms, we linve

_/‘((l - hary i f(»r/”(/.l‘ V Qabrda | Uarde),
I",f.,"“

e - abat 3 - €.

Integration of Particidar Binomials.

217. If we have @ hinemial of the form
du ot byt e

that is, in which the corponent of the variable without the
parenthesis is less by wnity thaw the eeponent of thg vari-
able within, we may make
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a+ba" =z, which gives

o (7 dz
nba" " 'do = dz, or o= —;
nb
(/: z,m +1
whence  du=2"—, or U == e §
nb (m 4+ 1)nb

and consequently
(4/ 1 [“,n)m{—l

st
(m + 1)nb

Al

Hence, the integral of the above form, is equal to the bino-
mial factor with its exponent augmented by unity, divided
by the exponent so increased, into the exponent of the vari-
able within the parenthesis into the coefficient of the
variable.
For example,
Q 2\
J(a+ 32°)’ wda = (-’-Iff Sy b C; and
4.2.3
1

2 p ..']
f((l + ba*)* mada = %(u + ba?)* + C.

218. A transformation similar to that of the last article
will enable us to integrate certain differentials correspond-
ing to logarithmic functions. If we have an expression of
the form

adx

au = o,

make ¢+ bx =2z, which gives dx= (%z’ and by sub-

stituting, we have

/' adx fadz a (dz
4

ct+be Jbz b 7

= %logz + C,
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and by substituting for z 1ts valuc

Y ady
/, e 7;1 log{e + by + C.

“ { b

In a similar manuer, we should find

> 7 ,
‘/" —’ - - ]()S.‘;((l /JJ') ’{‘ (',
¢ he [/
i which the integral is newative, sinee () 7XD

We can find, in a sindar maoer, the iaegeal ol every
fraction of which the nuwimerator s equal 1o the difforentd
of the denondnator, or cqudd to that differentiol nutltiplicd
by w constunt.

If, for example, we have
(bt 2erymde

57y

! :
@ « by ca

make @+ bx -+ ca? -z, which gives, bd e Qe =< d

:)
and hence,

ez
di ———, or v mlogz,

z

and by substituting for z its value

w = mlog(a |- ba - ca),

Of Differentials whose Lntegrals are copressed by
the Circular Punctions.

219. We have scen, Art. 71, that if @ designates an are
and u the sine, to the vadius iity, we shall have

dut

dozz— =,
l V1w
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- 7((u L
JVieT

or adopting the notation of Art. 72,

hence, x4 C;

du .
it Y- C.
. \/l -

If the are expressed i the sccond inember of the equa-
ton be estimated from the heginning of the fivst quadrant,
the sine will be 0, when the are is 0, and we shall have,
for @« -0

todu ~ =0, and consequently  C=0,

J Voo
and under this supposition, the entire integral 13
~ du

. Vl o’

Ta give an example, showing the use of the arbitrary

= sinT e,

constinl, let us suppose that the are which s to be ex-
pressed by the second member ol the equation, is 1o be
estinided fron the begnming of the second quadrant. This

supposition will rendey

) {li[l e 0 for w=1.

J Vi
R 1
But when 2 =1, sin"'u= =7 henee,

1 . . 1
“2—7 i‘ (/ jo, or g T e

and we have, for the entire integral, under this supposition,

~ du .,
e = ST — —
:

Vil

17*
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220. 1t frequently Lappens that we have expressions v
integrate of the forn
=z

/o .
Vi — 27

Let us suppose, for a moment, that @ 1s the radius of a
circle, and = the sine of any arc ol the circle s and that «
is the sine of an are containing an cqual number of degrees

in a cirele whose radius is unity ;- we shall then have,

I w1 a2
hence, o Z , and du = ig ;

« ¢
and consequently,

dz -
du ) /" " ‘ . K
Vi u"wj “ \/l < ‘ I Ve — gt
[ o

1 M du iz . y 2
ience = s T Sl sy -
' j \/ | TS f \/u," -2t “

the arc being still taken inca ewele whose radins 1s unity.
921, We have scen (Arto 70), that i & designates an

arc, and # the cosine, to the radins unity, we shall have

i
d oos —m et
\/] . u‘.:’
- du )
hence oo WeE
’ j \/I —t

or adopting the notation of Art. 72,

i

- Vl —

=cosT A C.
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10 the are be estimated fram the beginning of the fivst
. . i .
quadrant, it will be equal 1o for - 03 hence, the
.

. . . ~ 1
first member of the equation becomes equal Lo —gar when
w0, But under this supposition, cos™ = o hence,

C =0, and the entive integral s

. 1
— 2 CON {i".

I ~‘—/] T

el By aomethod anadogous to that of Art, 220, we
shoudd find

. 2 L7
S e oS,
Vit et u
the are being estimated to the radins unity.

923, We have seen (Arto 71), that if @ represents an

are, and w it Langent, 1o the vadins unity, we have

do = ’[—“ ————— ;
N R
i
henee, /_‘{-f”—; BT Y S
J

I the are is estimated {rom the begimmg of the first

quadrant, we shall have

> du
tang™'=0, when ———=0;  hence, C=0
=] 1 _{_ P )
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and the entire integral is

f du tana="
= langT .
1+ u? i

224. To integrale cxpressions of the form

dz

o + zi:’
let us suppose for a moment that « is the radins of a cirele,
and 2z the tangent of any are, and that is the tangent
of an are containing an cqual munber of degrees ina cirele

whose radius is unity @ we shall then have

| B VO A N

z , 2 dz
hence, w=", uwt="r, and du=-
7] u” a

and consequently,

> ~odz - z
S f s UG
1 -+ j o2 P

hence, by dividing by «,

v dz 1 z
/,,:’W = —tang™ '
Jow 2 74 a

the arc being estimated 1o the radius unity.
295 We have seen (Art. 719, it if @ represents an

are, and w the versed-sine, to the radius of uuity, we have

g ,,k-,'/”

T ’

. du .
hence, ‘/ e —pemversinTlu 4 O

Vau— it
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and if the arce is estimated from the beginning of the first

quadrant, €= 0, and we shall have

=over-sin” .

226. To integrate an expression ol the form
=
Visuz - 2
Suppose, as before, @ 1o he the rudius of a circle, and
vie shadl have (Arl. 224),

¢ dz
0 —, du = -—;
« @

and consequently,

0" r[ll t/” A
/ — e VCr-$i—
J \/:3//, - V:lu* — a@

to the radius unity.

T

Integration by Scries.

227, Fvery expression of the form
il
inwhich Vs such a function of w, that 1t can be developed
m the powers of w, may be mtegrated by series.
I'ur, let us suppose
N Ad® b Bat g Cof 1 Dot 4 &, then,
X == Aatde - Bddae + Catdde |- Dide | &c.,

. A B (! D
j\ 1.":'~— —r':ﬂflA S LELD “f—l—l/ \,d+lk
JAd u—f—lJ ¥hf11 1(:}1' r[}—L Hdee,
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Hence, the integration by scrics Is effected by develop-
tng the function X i the powers of x, multiplying the

series by dx, and then integrating the terms separately.

. e
Let us take, as a first example,
« -+ x
dor 1
Y e =da(a )
-k o A4

| r @ ,"‘
(¢ payt = —— S T &

« T o

and conscquently,

Y e e il atde attla
B el — e — &)
./11+;L' /(rz(' (l'5+ ! |((>

75 o'

1
a

LR7A

. Yo .
and remarking that ./_f[ o dog(a fay o (At 218),
o i

we have

SN T B

2 ; 1
x a0 o z:' X
log (i 4 a) = —— o= & G
g ( ) u o0t 3ut ad!

To determine the value of the constant, make
)

a2 0,
which gives

loga -0 €, or ¢ loga; hence,

N . 3 1

@ @ :1; o
log (e +x)=loga+ ——- -+ ;——= &c.
g ) = « Lt 34 adt ’

. s ol )
10g(0+a>)—1(»gztz—]<)g<l+ o i :

i W I S
«

a 24t 3’

a resull which agrees with the development in Axt. 58.
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228, Lot us tuke, for a sccond example

. L ,
We have, LL wda{ L4 a?y™
a7

and by developing and imtegriting,

r . . N
/ LI i-‘—' SUob & 1L
1| 3 D 7

When we make @ =0, the are is 05 henee,

3 5 7
L™ — b o &g

a result which corresponds with that of Art. 78.
o . oo o
229, 1, i the expression .y we place @® in the
-

first tern of the binomial, and then develop the hinomial

27401, we obtain

T e ! 1 1 1
E N L R L

and by integrating, we have

tang ™ a - L.Jr. L ,J.;;‘_ - &e. + C.

a Sat D
To find the value of the constint € let us make the

1 - .. .
are =907 = -7 Phis supposition will render the tan-

~

gent x infinite, and consequently every term of the series

will become 0, and the equation will give

—1——71' =00, or = —Lw.

2
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Making this substitution, we have, for the true integral,
1 i 1 |
lp s — — ", 7 2L 4- &e.

@ S S5t

dr L _
o= tang e s
a1 e R’
. . (l.‘L‘
h’()lll l,ll() lf‘])l'('.‘%%l”llg l—— )
b

ally the same.

30. The twuo series, found
are, as they should e, essenti
Jied byt cotangent,

2
and ‘f/"’———,
a4
multyy
(Trie At NV

Tor, the tangent ol an are

is equal to radins sguare or unity

Hence, i we substitute for a1 the first series, »‘, we
"

for the (tmnpl(:nu'nml are,

shall have,
Lane™ 1 1 ] | 1
ang” ' —- -— 4
T v RINT Hat
. . 1
and subtracting both members from 7
_ 1 1 [ 1
g™ e T — 4 ,~77,+&(:.
52 @ Su Yo

1 -
—_— —_— {0 _
P x — lang .

031. We have found ( Art.

sinT'x —j"r’/"
Vi—a

and by developing, we find
. b1 8, 135
(1—a?) “=14 5oty jiu'l:’ + /‘5.—4—.—“—1’ + &ec;

dor, and integrating, we obtain,

multiplying by
1 a8 1 3 1 3 S
s T LT N &
sin~'x ¢%—2:3+245 24.7+ Co
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the constant being 0 when the arc is estimated from the
beginning of the first quadrant.

If we take the arc of 30°, the sine of which is equal
to half the radius (Trig. Art. XIV), we shall have

.,-—-
]..‘

$in1800 =~ +~.~.—+ +:

5

3
Y

o =—-
w0

3
7

W=
W=
QO =
L)

W=

hence,

, 1903111811 1.88.1.1
= 6sin—'300=6( = i+ &e.)
o ’(2+z.3.2"+2.4.5.2-" 24672 T XC)

and by taking the first ten terms of the series, we find
x = 3.1415962,

which is true to the last decimal figure, which should be 5

232. We will add a few more examples.

. ¢ da
1. To integrate the expression —p——.
Va—a?
By making Vz=u, we have
dx da _ 2du

Ve—22 VaevVi—a Vi—w
But from the last series

2(]15 ]1/ 2 b e
__0 + ,__+ -y
\/] —u? ( 45

hence




o

§ Sl

T ————— .

/A
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P
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But -
(1__9:_7_ __l__x__l_l_:r 1.8 )
2a o9%a 2 44a 2.4.68d i
5
hence '

-1, -8.2'w
-—-E'.—4-.—6— —9__5;3—— &c )V20+C
and consequently '
P s i ey W |
fiaV/2aa—@ =55 F2a 2 4 74 5
1 1.8 1.8 i
—-—2—.-1.—6—.-5-7—-&0)23‘\/20&‘4‘0 |

If the radius of a circle be represented by d, and the
origin of co-ordinates be placed in the circumference, the

equation will be (An. Geom. Bk. 111, Prop. I, Sch. 3),
¥ =2a—2; hence y =YV 2a@—a

and conlequéhtly (Art. 130)
de vV 2ax —o” = yda __/\',_ 5

is the differential of a circular segment.

If we estimate the area from the origin, where =8}
we shall have C=0. 1f then we make =4, the series
will give the area of one quarter of the circle, if we make
2= 2a, of the semicircle. ‘e
12°' 1.82° lﬂﬁ"—+&c.-{fa

= ' da .
% f Vita =8—55 1245 2.4.67
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1.3 L

2442 2.4.6.62°

—&c.J-C,

4, f

Integration of Differential Binomials.

234. Differential binomials may be represented under
the general form

]'.
a"dz(a + ba")e,

in which, without affecting the generality of the expres-
sion, 72 and 7 may be regarded as entire numbers, and »
as positive.
For, if m and n were fractional, and the binomial of
the form
1 1 »

w?dx(a - /).'r'")""

make @ = 2% that is, make the exponent of z the least
common multiple of the denominators of the exponents
of @, and we shall then have

P

1 19 »
@’ dr(a + ba* )1 = 62"dz(a + b2®)7,

in which the exponents of the variable are entire.

If n were negative, we should have,
2
" da(a + ba~")1,

. 1 o
and by making o= - we should obtain

— 27" dz(a + bz")i

the same form as before.
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|| Furthermore, the binomial
.
b \ o™= da(ax’ + ba")?
may be reduced to the form
or_ P
‘ "1 da(a 4 ba""),
" by dividing the binomial within the parenthesis by 27, and
! Pr

multiplying the factor without by x7.
235. Let us now determine the cases in which the

P
binomial #"~'dw(a+ ba")7 has an exact integral.
Make a4 ba"=2"; we shall then have

-

Z—a 3 21— a\"®

and by differentiating,

1
g 9 a1 2! — a\" .
o tde = nbz' (-——b dz;

hence

= 2 e z!__a n
a" 'da:(a+b.z")¢=%z’+' u;z( - ) >

which will have an exact integral when —:i is a whole

number (Art. 216).

Hence, every differential binomial has an exact inte-
gral, when the exponent of the variable without the paren-
thesis augmented by unity, is exactly divisible by the
eaponent of the variable within. % §1° = / ¢ g

Thus, for example, the expression
ada(a+ bm’)%

»

onahw e N
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has an exact integral. For, by comparing it with the
general binomial, we find

m
m=6, n=2, and consequently, o 3,

and the transformed binomial becomes

; 2
lznw—l(k(z el .
b

236. There is yet another case in which the binomial
- »

2" da(a + ba™)® has an exact integral.
If we multiply and divide by a", we have

3 »
@ dn(a + bar)t = 2™ da [(aw= + b)ar]s
£ o

=a" ' dw(ax™ 4 b)T 2t
E

-1 2
" dx(ax™ + b)7

m-
@

’

e add unity to the exponent of @ without the
sis, and divide by —n, the quotient will be

m ]) . .
- ;—+—>, and the expression will have an exact
. ¢

integral when this quotient is a whole number (Axt. 285),

Hence, every differential binomial has an exact inte-
gral, when the exponent of the variable without the
thesis augmented by unityy
thesis, is an entire numbc%.

paren-
lus the exponent of the paren-

237. The integration of differential binomials js effected
by resolving them into two parts,
has a known integral.

We have seen (Art, 28) that

of which one at least

d(wv) = udv + vdu,
18*




g
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whence, by integrating,
ww == fudv A Jodu,
and, consequently,
Sudy e — fod.
Hence, if we have a Qdifferential of the form Xep, in
which the function AT may be decomposed mto two factors

P oand Q, of which one of then, Qda, can be integrated,
we shall have, by making S Qe = and PP —
[ PQdw = Po —fodl,
in which it is only rmluir(;d 10 integrate the term Sodl.
. . T
935, 1o ubridge the results, let us wnte p for L—, n
Y

which case p will represent a fraction, and the Jifferential
binomial will take the forin

2V (e A b))

If now, we mltiply by the two factors 2™ and 277, the

value will not be aflected, and we obtain
A"t (A ba”)n

Now, the factor 2" Vde(w 4 ba™)" 18 integrable, whatever
be the vidue of p (Art. 217); and representing this factor
by di, we have
a b byt
= (H‘L ,,)_.,’ and w=a" "
(p+ l)lt/)

and, consequently,

J 2Nl (a 4 D) =

2 4 Dt pt o -
) A =i (a A ba™yr Tt

o (p+ 1 5—/[/71- - i( };Mf—li yauh
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Bllt, j = 1 (/.’IJ ((L A{_ [).l,'")”"'l _
S (A ba) (- bat) =

(lf.’l;’"—n_l(];),'((l "l" [)(I,".))z + /)‘/‘wmhl (l.’l,'((l, <} [;‘,;“)Y’ ’

substituting this last value in the preceding equation, and

collecting the termns containing the mtegral
S (o bar)?,

we have

(l p " ) JamVda (a4 bar)r =

{(p+4
a7t A b)Y o — wy [ " da (a4 ba)? .
(p+ Dynb ’
whence, ’
formda (A) ..ol S e (a4 ba)? =

R T S L (l/l ) fx’“""‘l(/l (e + /n“)"
(/m 4w}

This formula reduces the differential hinomial
Jam da(a+ be')” o that of [ (e + ba™)7;

and by a similar process we should find
S da (a4 ba)? o depend on fam = o b\
I . 3

and consequently, cach process diminishes the exponent
of the variable without the pareuthesis by the exponent
of the variable within,

After the second integration, the factor m— n, of the
sccond term, will become me— 207 and afier the third,
m—3n, &c. If m is 2 multiple of », the factor m—n,

m— 2, m— 3n, &c., will finally become equal to 0, and

then the differential into which it s multiplied will disay)-
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I ¥ R 3

pear, and the given differential will have an exact integral,
which corresponds with the result of Art. 235.

939. Let us now determine a formula for diminishing
the exponent of the parenthesis.

We have 1
Ja"'de(a+ ba")? = fa" " da(a + ba")* " (a + ba") =
afa""dx(a+ ba™)*t + bfa"*""'dx(a + ba™)?.
Applying formula (A) to the second term, by placing
m+n for m, and p— 1 for p, we have
Sa™*"""dx(a+ [

a™(a + ba")? —am [ dw(a + ba™)*
b(pn + m) ;

Substituting this value in the last equation, we have

formula (B). ....oovvnvvennn Sa"dx(a + ba")" =
@™ (a+ ba")*+ pna [a" " da(a + '
pn+m i

which diminishes the exponent of the parenthesis by unity
for each integration. '
240. By means of formulds (A) and (B), we reduce

C farda(a b o o dn(a ok bty
rn being the greatest multiple of 7 which can be taken
from m— 1, and s the greatest whole number which can
be subtracted from p.

For example, [a'dz(a+ ba?)
(A), to
. 5
Satda(a+ ba”)*, and then to Jxdx(a + ba*)¥ :

5
7 s reduced, by formula
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5
¥}

and by formula (B) [f#dz(a+ ba*)?, reduces to
3 1
[adxz(a+ ba®)?, and finally to [ wdx(a+ ba®)*.

9241. Tt is evident that formulas (A) and (B) will only
diminish the exponents m—1 and p, when m and p are
positive. 'We will now determine two formulas for dimin-
ishing these expopents when they are negative.

We find from formula (A)

Sa™""'da(a+ bx")" =
2" "(a + ba")**' — b(m + np) [ o™ dx(a + ba™)?
a(m—n) (

and placing for m, —m+n, we have

formula (C) e oo otvaconas Sa~™"'dx(a+ bar) =
a™(a+ ba")?+' 4+ b(m —n—np) fa~ """ dw(a + ba™)?

— am

in which formula, it should be remembered that the nega-
tive sign has been attributed to the exponent .

242. To find the formula for diminishing the exponent
of the parenthesis when it is negative.

We find, from formula (B),

S de(a + ba")? ' =
o (a bty — (ot p) [ dw(a 4 by

pna

writing for p, —p+1, we have

fOl'mllla (D) ............. 'fxm—‘(lx(a + b.’l,"')_" e
a"(a+ba) "+ — (m + n—np) [a" "' da(a + bar) 7
(p—1)na -
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This formula does not apply to the case in which p=1.
Under this supposition, the second member becomes infi-
nite, and the differential becomes that of a transcendental

" function.

943. It is sometimes convenient to leave the variable in
both terms of the binomial. We shall therefore determine
a particular formula for integrating the binomial

ada

Qax — a*

1
o (2aw — o) e = A
This binomial may be placed under the form

fa *dx(Ra— m)__‘l",

and if we apply formula (A), after making
: m=q+__12_’ n=Ll.p= ———12—-, a=2d b= =ls

we shall have
! 1
fa' Fde(2a— z) T=

Ry L
2 *(2a—a)*

1 ’__3— ___l_
+2—a%j‘)qu Tda(2a—a) T3

q
and if we observe that
1 1 3
=7 . q=— =1 =
g T=afe " & t=w .
/

and pass the fractional powers of @ within the parentheses,

we shall have

fqrmula (E) ................. f%ﬁ ]

gVBar— 2 (Rg=1ea (&4
B e LR S S
q q Qax — &’

&
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which diminishes the exponent of the variable without the
parenthesix by wnity. Hoy s a0 positive and entire num-
ber, we shall have, after ¢ integrations (Art. 226),

!

Sver-sin T —.

o
/\/lu:f—— - L

Tutegration of Katwnal I'ractions.

211, Fvery rtional fraction may he written under the
form
Paor " Qa0+ Ra - S
T e T Ry
in which the exponent of the highest power of the varias
ble in the numerator, is less by wnity than in the denomi-
ntor, Porg il the greatest exponent i the numerator wis
cqual to or excecded the greatest exponent i the denoni-
pater, the division might be made, giving one or more
entire ternes for o guotient and a remainder, in which the
expronent of dhe Teading letter would be less by at least
wiity, than the exponent of the leading letter i the divisor,
The entive terms could then be integrated, and there
wordd remann the fraction under the above forn.
Plice the denominator of the fraction equal 10 0@ that
15, nide

{- (,2/.!.'” L. I\f/«’I,‘ + N s 0,

and let us also suppose that we have found the # binomial
factors o which it iy be resolved (Alg. Art. 264).

These factors will he of the form o —o, @ — b, @ —c¢,

—d, &c. Now there are three cases
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1st. When the roots of the equation are real and

unequal.
od. When they are real and equal.

3d. When there are imaginary factors.
We will consider these cases in succession.

1st. When the roots are real and unequal.

a
245. Let us take, as 2 first example, o
osing the denominator into its factors, we

By decomp
have
adx

adx
_GOB ey
2 —a (x—a)(w+a)

and we may make
da A B
/a S ] i R
(w—a)(m+a) w-—a+w+a de,

in which A and B are constants, whose values 2
be determined. In order to determine these constants,
let us reduce the terms of the second member of the
equation o common denominator; We shall then have
adx =(Am+Aa+Bx——Ba)dm
(w—-a)(w—'.—a) (z—a)(z+a)

re yet to

aring the two members of the equation, we find

In comp
o= Aa:+Aa+Ba:-—Ba;
or, by arranging with reference to @,
(A+B):c+(A-—B—1)a=0.

quation is true for all values of @ the

» (;"" » ""4\,,_ \4—

But, since this ©
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coefficients must be separately equal to 0 (Alg. Art. 208):
hence

A+B=0, and (A—B—1)a=0,
which gives

A:—1~, B:——L,
2 2

Substituting these values for A and B, we obtain

1 1
ade _ 7dz 0%

and integrating, we find (Art. 218)

* adx i 1
J a’:l(_:ﬁ = log(z — a) — ?10g(:r +a)+ C,
and, consequently,

1

Je = (20 + 0=t () + ¢

3 2
: a + bz
246. Let us take, as a second example, — —da.
a‘xe —a&

The factors of the denominator are @ and a® — o but

E—2=(a+a)(a—2):
hence, the given fraction becomes

@ + ba?

z(a—x)(a+ ) o
Let us now make

3 4 ba? A B
a4+ 0 (o +C

a(a—x)(a+ ) ~z a—z ata
19
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reducing the tenns of the seeond member 1o a common

Jepowinator, wWe have

P+ Ih e (!ll u( 1

*— Lar

J((t»—.ﬂ (u%—a 77-7'\”~‘)(”* .:‘)

and, compariig the like powers ol (Ala. Art. a04),
f)) — A - (/‘ et /J, .l))ll, '5— (,'ll, = (), A/(/z = ([,3,

Trom these cquations, Wo find

-0

o -}
A=u, B=-7

]

and substilating these values, we obtain

A bt o a4 b o+ 0
-

___»'1/ =i — - NI P
avv“.L‘LL - +"((1——:) 2(/L+.’L‘)(L’

and intearating (At a1x),

| . ‘

o 4 bt b

f e dp = alogae — 7 fog (e - )
2

— g’};Jﬁ log(a + a) -

o 4 b 0
—aloow — —l” {log (o — ) - log(a -+ M+ C

e :
=aloga— -~ l(m(:/ (e o) F ®

4! . )

= qloga — i, f) Nog (o — )
—alogx — (¢4 hlog = o O

. S — D
947, Let us take, fora third exaumple, 7"‘_,_’,._’—1——‘_ dx.
a2t — b+ B
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Resolving the denominator into the two binomial factors
(Alg. Art. 142), (v —2), (x —4), we have

3x—-D A I
- 4 7 hence
P—bx+8 w—92 x—4

3x—>5 __VA.’I,'«-4A+BLL‘——2B_

P 6eg8 | & —bx+8 ’
and by comparing the cooflicients of @, we have
—5=—44—-2D8, 3=A4+ 5,

which gives

7 1
B~.—2-, A_—-z—,

and substituting these values, we have

~ 3a—5 1 [ de 7 dr
R ey —=— = =] — C
ja:“-—tia:+—5 2 o :v—2+2. ;1:——4+

7 1
= E—log(w —4)— E—l()g(m —2)4 C.

048, Let us take, as a last example,

Resolving the equation
&+ dax — 1P =0,
we find
pe —0a b VIE Y, a=—2a—VAd+

and consequently, for the product of the factors,

(2420 Vadi 1) (e +-Ra— Vi y Y=o+ 4ax—b2.
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¢ roots by — K and

e work, represent th

Po simplify i
will then be

_ L, and the factors
z4+ K, x+ L,

and we shell lave
A 3 — B - hence
s+ K 2 T T’

X
— e

:L2+4ax—b‘
@ AJ—*—ALT]?I—*—.“I\

'.’—’—/T:
af‘\—flaw——b‘ *‘+/1a,1——b

whence,

AL+ BK=0, A+B=1

and, conscqueuﬂy,

K I
A=~ - B = - S
K—L K— L
hence,
* xda K
o — ] — Tog 1)+ C-
],,24_4(,1‘__(, K—-L og(m—{—]x) K—1 A()r(x+ >

grate @ rational {racuon of the

219. In gcncm\, to inte

form
Lm——l+ (edm——z . *_I\) ¥ + ‘S_(]f
mm _\ (¢/ 1n~\ . +1)/1 }_ Sl

) m pmlwl fractions, of

1st. Resolve the fra('li(m it
e denomi-

wlich the munerators shall be cons
nators factors of the denomandlor of the giv

9. Ilind the wvalues of the numerators €

froctuons, and wdtiply each by dx.

tants, end th
en fru(;twn.

of the purtiul
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3d. Integrate each partial fraction separately, and the
sum of the integrals thus Sfound will be the integral

sought.

950. The method which has just been explained, will
require some modification when any of the roots of the
denominator are equal to edeh other. When the roots are

unequal, the fraction may be placed under the form

Pa* + Q* + R+ Sz+ T
(@—a) (@—0b) (x—c) (x—d) (x—e)

C 0
£ T B
z2—b  @x—c ax—d

x—a xr—€

if several of these roots are equal, as for example,
@ = b = ¢, the last equation will become

Pt + Q2+ &e. A+B+C D E

(a;—a)“(w—d)(w—c)_ x—q z—d x—~6€

in which A 4+ B + C may be represented by a single con-
stant A’

Now, in reducing the second member of the equation to
a common denominator with the first, and comparing the
coefficients of the like powers of @, we shall have five
equations of condition between three arbitrary constants,
A’, D, and E: hence, these equations will be incompati-
ble with each other (Alg. Axt. 103),

If, however, instead of adding the three partial fractions

A B C

a:—a’ .1,‘——[), @xr—C

’

which have the same denominator, we go through the
19%
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process of re

under the form

A4 B

ELEMENTS oF THE
ducing them o one, their sum may be placed
Yo

(.'17

or, by omitting the accents
A+ Bat Ca?
(o — “ay

251, Let us now make

r—0a =7,
we shall then have
A+ BLLLT
(@ - ay

A+ Bat fl‘uj‘

substituing for z i

and conscqently,

s value,

r=2+d3

A +1 Ba + (,u A Bz + 2( uz A+

2?
- !?thﬁ(;’”ﬁ + ,C ;

z

-3

and rcprcscnting the numera-

tors by sin(rh: constants, Wt have

A+])J‘+(1
=

the form under which the fraction

Since the same

R/
Ta—ar

may be Wr e

&

A/
“ (@)

i
QX -—

reasoning will apply to the case In

which there arc # equal {actors, We €

onclude that

Pa™ '+ Qam - 4 Re 4 S
s
(a,: . u)ﬂh
A ’ Al A
(I:ZF*TIiﬁﬁﬁ7*(f:uVH“"+&T
252. In order, therefore, to integrate the fraction
Pt Qat + &(
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place 1t equal to
A A’ A” l) I
(v —a) (z—a) " a Ta ' w—d —e’
then, reducing to a common Jenomimator, and comparing
the coeflicients ol the like powers of a, we find the values
of the numerators of the partial fractions. Multiplying
cach by dir, and the given fraction miay be written under
the form
A A’ A D

—-»---—r/'1'+ (4 —dae - de

(2—u)? (J-*Il) (w—ut) w—d 7-—{,(1}0

The first two fractions may he integrated by the method
of Art. 217, aud the three last by logarithis. Hencee, finally,

j'!jd‘ + Qi R et A A

(7= )l — ) (e — o) 2y w—a
1+ A log (@ — @) 4 Dlog (e — d) + Elog(x — )+ C.
253. Let it be required to integrate the fraction

2w
We have

Rar A 4 AT
Grat Gra et

reducing the fractions of the sccond member to a common
denominator, and comparing the coeflicients of x in the
two members, we have

20a—=A" and A4+ Aa=0:

hence,

A= —2¢% and A’ =2a;
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and, consequently,
Qa*dx 2udx_ adx

Qaxda _ _ *¢ L2 .
(« + a)* T T whwy @t +a)’

hence, (Arts. 217 & 218),

(ia:ll;) _ :Q_E% + 2alog(x + a).
054, Let us find the integral of
2dx B
= — uat — wE+ o
e that, by

ator equal to 0, we s¢
henee,

the terms wil | destroy cach other:
and @ —a a factor. Dividing by
he fraction may bhe

By placing the denomin

making x =4

is a root of the upx.mon,

x — a, the quotient is af — a*: hence, t
placed under the form
a” dé’ aAlx
A= G e aE= 9
atdx

CETRCERE

Let us now make
A Al B
* (x— u)— + 24 a

x*

(z— PECERD) T (e — a0t

the terms of the second member Lo a common

Reducing
denominator, We have
e A(T+r/)+A(J ——u)—}-li(v‘——a)

=
(x — ) ) A a) (@ —u)* (= VE(r + )
and developing, and comparing the cocllicients of the like
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powers of a, we obtain the cquations
A+ DB=1, A—2Ba =0, Aa— A+ BiP=0
Multiplying the first equation by @, and adding it 1o the
third, we have
Aa + 2 Ba* = o’
then multiplying the sccond by ¢, and adding 1t to the last,
we have
2 =2Ae, and consequently, A :—l—a
¢ ) L y )

substituting this value of A4, we find

D= L and  Af = -
1 4

Substituting these valnes of A, A, and B, we have
a?dx _ ade 3dde ok
(0 —a) (e +u)  2@—a)f A(z—-q) 4(x+a)’
and consequently,

¢
T (e -a) + —1““ —a)

- ,111, log{x + @) + C.

955, We can integrate, in a similar manoer, when the
denominator contains sets of equal roots.  Let us take, as

an example,

adx ) ada
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Make Xy
A A B B

a
_______._-—-—-—-——_:._-———— e JE— R
(z— 17 (z+ 1) (a:——l)"’+x——1 +(a:+ l)"‘+a:+ 1’

reducing the second member to a common denominator,
we find the numerator equal to

: A(x+1)’+A’(x-1)(m+1)2+B(w—1)2+B’(z+ 1)(e—1)3

and comparing the coefficients with those of the numera-
tor of the first member, We have the following equations :

A £ B'=0,
A+A+ B-B=0
24 _A—2B—B =0,
A—A+ B+ B=ea
Combining the first and third equations, We find A=B;
and combining the second and fourth, gives 2A+2B=a:
hence, we have

Pt L. 4 L
A=B= Y A=—5 B 2
consequently, the given differential becomes

1 dx dx da dx
Ta[(m_1)2+(m+ 1?2 a—1 T 1]’

and by integrating,

adx 1 1 1

f = =Za[_.;__1._a_—l—1og(z-1)+1og(z+1)—_\+c.
956. If an equation of the second degree has imaginary

roots, the quantity under the radical sign will be essentially
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negative (Alg. Art. 111), and the roots will he of the form
e padby —1, aviapu—by =1,
and the two hivomial fwetors corvespouding to the roots

will be

(0 v by 1) Gt by S ) a? b Raw @ 4 O

Henee, Tor cach =et of mnaginary roots wlhielh arise from
Placing e denominator of the fraction eqial o 0, there
will be w factor of the second dearce of the form

at o Quae bodt
257, 1 the imaginary roots are equal, we shall have,

@0, w= A0 \/f:”lA, a= —by 1,

and the factor will become

In the equation,
2t — Gow A 106720,
the roots are,

@ 2B3ebey —1, w=8c—cy/ =1 ;
comparing these values of wowith the general form, we
have

= - 3¢ b=c,
and the given equation takes the form
@t = Gew -f 9t 4= ¢F o 0,

Comparing the roots of the equation,

+da b 12 =0,

with the values of @ in the general fonn, we have

«—=2, b= "/S,




.
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and the equation may be written under the form
#yaz+a+8=0

/ ‘

958. Let us fu;ét consider the case in which the deno-
minator of the fraction 1o be 'mtegrated contains but oneé
set of imaginary T00ts. The fraction will then be of the
form,

P+ Qa:+Rx2+ Sa? + &ec.
4 82 4 &o . oday
| (@—a) (@—0b).-- o — h)(@P+ Rax + @ + %)

which may be placed under the form

" adoi JiBde Hie Mz+ N
w—a+ac—-b' i +m——h+m2+2aw+a2+7;2dw'

The first three fractions may be integrated by the methods
already explained : it therefore only remains 10 integrate
the last, which may be written under the form

Maz+ N
@+4Y+RM'
If we make *+@= z, the expression becomes

Mz+N——Ma
e i

and making N—Ma=P, it reduces 1o

= e

which may be divided into the parts,

Mzdz + Pdz
2+ b e

which may be integrated separately
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To integrate the first term, we have

Mzdz zdz f 2zdz
jz P& ﬂ’]j 22+ - 2+ b

in which the numerator, 2zdz, is equal to the differential
]
of the denominator: hence (Art. 218), 'ly
*Mzdz M
—_—= ~—lon 2+ b%);
S5 =G loa(= +¥);

or by substituting for 2 its value, 2+ a,

[ede _ Progl(a+ o + ¥

2% 4 v

— J-g log (o + 2ax + a* + b%)

= Mlog+/a* + 2ax + a’ + V*.
Integrating the second term by Art. 224, gives
. t ng™
2+ v ang ( )

or by substituting for z its value, @+a, and for P,
N — Ma, we have

*Pdz N-— ﬂmtan o7 (’Y‘ + a) !

2+ b iyegrem
and finally,

/' Mz + N -
J &+ 2ax + @* 4 VP L
2 = e T ¥ N — Ma x4 a
Mlog Va* + Rax + @+ b+ ———»———t <_l_>
)

959. Let us take, as an example, the fraction

c+fx

@ ——fl o

20

T W
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in which, if +1 b
will reduce 100 he
pator,  Dividing by

wnder the furm

o substituted for @, the depominator
nee, a-- 1S factor of the denomi-

thie factor, the {raction may be put

m which a4 A+
factors. Vlawcing thi
of the 1:(1u;\\inn, an
values in the form

we find

a

We may place ih

o e A Moy N .

reducing the secont
and comparing the «

those of o in he

and b, i the gener

that

1 s the product of the nanginary
s prndur\ equitl Lo 0, tinding the roots
4 comparing them with the generil

i

)

at 4 2wk dt =0,

1 :
L /R

2 4

o given fraction under the forn

TN , ) >

pap by P e e

| jnember 1o euimios denominator,
oeflicients ol in the numeralar with

merator of the fir=l meinber, we oblaim
Iz ‘1 i e
Mo J N

Substituting these vadues of M oad N us Aso those of o«

A fort ol A, 25, and recollecting

S o
! '/‘- I S '["yy i{rlug(.xr——l),

r— 3
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we find

A ’i/,f dor = E—j}‘—[‘]og(m —1)— i:t_j_f_lgg Vat -z ﬁ

at —1 3

- 1

-+ l—tc tang ™~ ‘{ ,l:i—é + C.
IV T RV

960, The equation which arses from placing the de-

nominator of the [raction equal to 0, miy give scveral

pairs of 1maginary roots respectively equal 1o cach other

In this cuse, the factor a® -z 2ax -+ @t 00 will enter

ceveral times mto the denonmivator, or will take the form
(;;;'" + Lam + @+ [)L')p;

and hence, that part of the (raction which contains the
pairs of equal and inginary roots, must he placed under
the form (Art. 251)

I K W+ KN
TR 1wy T R
I+ KN I - K

S bt B

(st 4t )

Now, reducing 1o a common denominator, and comparing

he coelicients, we find the values ol the constants
i, K, 1, K, 1, Koo .. I, K©"...

after which, muluply each term by der, and then integrate
the tenus separately.

Sinee all the terms are of the same general form, it will
only he necessary 1o integrate the first term, which may

be written under the form

I+ K

G ey 1T
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which, if we make #+a =2, will reduce to
H—Ka+ Kz
el o L
(22 + )" a
and making M = H— Ka, it will become
M+ Kz ,  Kzdz Mdz
(b2+ z2)p dz = (bz 3 zZ)p dz ¥ (b'z ke zz)y'
The first term of the second member may be placed under
the form

K [ (b + 2*) " zdz,
and integrating by the formula of Art. 217, we have

Kedz _ 1 K 1 +C
(b’+z’)’_2(1—}’)(b2+zz)"' .

It then only remains to integrate the second term
Mdz
& +2)
By comparing the second member of this equation with
formula (D), Axt. 242, we see that it will become identical
with the first member of that formula, by supposing

— M [P+ 2" dz

m=1 e=b b=1, and n=2;
and hence, by means of that formula, the exponent —p
may be successively diminished by unity until it becomes
— 1, when the integration of the term will depend on

that of
dz

P+ 2
But we have already found (Art. 224),

Y

b"d-:ﬂz2 - _lb_ tang™" (%) b
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and hence the fraction may be considered as entirely in-

tegrated.

961. Tt follows, from the preceding discussion, that the
integration of all rational fractions depends on the follow-

ing forms :
wm+l

m-{—l'

1st. fado=

2d. [ dz = == log(a = ).

axa

W fare=gs(Q)

Integration of Irrational Fractions.

262. The method of integrating rational fractions having
been explained, we may consider an irrational fraction as

integrated when it is reduced to a rational form.

263. Every irrational fraction in which the radical
quantities are monomials, may be reduced to a rational
form.

Let us take, as an example,

1
T x? — la
:/ 2 _dx, or — .
Ve Ve YR

Having found the least common multiple of the indices
of the roots, (which indices are the denominators of the
fractional exponents,) substitute for  a new variable, 2,
with this common multiple for an exponent, and the frac-
tion will then become rational in terms of z.

T L
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In the example given, the least common multiple 1s 63
lience we have

]

p—28 and Vo= & V=7, de= 62°dz ;
and substituting these values, we oblain

N — 50 P 625 — 2u2®
‘/,‘.{: gy 07 dz= 0 —dz;
A — Ve F z —z

an cxprcssion which may be intcgruh:d by rational frac-

. S . . . . 67
tions ; after which we may subsutute for z its value, .

o64. I the quantity under the radical sign 18 a polyno-
mial, the fraction cannot, i general, he reduced tooa
rational form. We can, however, reduce o a rational

form every cxpression of the form

X( \//T*F'HTZL Ca*yde,

in which X 18 supposed to be a rational function of .
If we wrile @ denominator 1, and then multiply the
pumerator and denominator by VA Ba® Cz*, the

expression will take the form

Ndx

\/ A;g’]?l—;ﬁ ’

in which X' is a rational function of @: hence the two
forms arc essentially the same.

If now, we can find rational values for W/ZTB;W
and for du, In lenns of a new variable, the CXpression will
take a rational form.

There are two cases 10 be considered @ sty when the

coeflicient of 2 i3 posiuve; and, 2d, when it 13 negative.
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Let us consider themn separately. IMirst, make
e JA B
A4 Buwt Caf = VU ,C,{.?.m_*_w

=V CVau - ba + o7,

inwhich e=>- b="+
O
g ;

In order to find rational values for dw and Vat ba+a,

place
Vet betat=wx+z (1)
from which, by squaring both members, we find
a4 by =2az+ 2% ()

and hence,

and substituting this value in equation (1),

— 2_
Va+ be +a' = i a»——}—z;
b2z

and by reducing to the sune denominator,

22 —-bzda
[ e

Va +br+ o= — Y

(4)

Let us now find the value of dz in terms of z. Tor this
purpose we will differentiate equation (2), we then find

bdw = Qadz + 2zde + 22dz ;

whenee we have

(h—2z)dae=2(x+2)dz;
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(1) and (4), and substituting

and by cubtracting cquations
for x4+ 2 the value thus found, we have

[3 2 __ bz
b— 2z)de = — f,(i’bliff),([z,
bh—2z

2(2" — bz 4+ a)
and du = — RlzZ—0 T gz, (5
(b— 22)” = (5)
065. Let us take, as an example,

du

VAT Bt O

which may be written under the form

dx )
'_":l” et |
\/(Jx:z:\/u+bm+m"
of Va+ ba T2 and da, from

and substituting the values

equations (4) and (5), we have

o da _ ede

T e 027
and multiplying the denominator by the value of % in
equation (3),

dr _2dz |

.1\/(1’+/)JJ —F a? Z—a’

and. then by VO, we have
dx 2dz

da

T T TS or —— T T =T ——y
VO xw Vo4 bk a” a2V A4 Baet . (—a) VO
whicl 1s 2 rational form, and may be intcgratcd by the

methods already explained.
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266. Let us lake, as a sccond example,
da
—;T‘,T: ]
Vih + Eaf

which may be placed under the form

¢ \/ LA
e
and comparing this with the form of Art. 264, gives

c=+/C, b=0, —I(%:a.

Ience,
1 dx

. Iz
./ Vhidd cJ vV ‘t
ITaving placed

Va4 at=z+ a2,

we found, Art. 264, cquations (5) and (4),

z* + o — 4 a
de = — o T dz, Va4 o= P
hence
dx dz
e — = —logz.
Va+ @ z

e . o 1
Substituting for 2 its value, and multiplying by — we
c

have

* Lo 1 5 |
cri”

o . /)
and substituting for « its value, -5, we have
¢
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dx 1 1 \/—4—"77, .
fifl’: — —log —(Vhr 2 —cx) |+ C
NI ¢ ¢

= — l-logfL — lAlog( \//T;:; —cx)+ C.
¢ ¢ ¢

But since the Jifference of the squares of the two teyms
within the p;n-cnthcsis is equal to I, it follows that if Lo
be divided by the difference of the tenns, the quotient will
be their st (Alg. Art. hY). But the division may he
effected by subtracting their Jogaurithms. .ol us, then,
add to, and subtract {rom, the second member of the equia-

. 1
tion, — logh. We shall then have,
Pl

! 11 1 1 S
———:(.i, = .—1105:4——411)gh+»—10g h——log( Vipdat—en) 4 Cs
NyEr EoTREITE T

c

by repres o the three const s ! log L ! log /
or by xcpx(,:sentmg e i constants —- og- - - og h,

and €, by single letter ¢, we have

LD ge(VE e v e) b G
V4 éa’ ¢

967, Lot us take, as a third example,
(l:z;'\/ w4 ar.
Comparing this with the gencral form, we find
a—=m* and b=0;

hence (Art. 264),

— 2 7712- (z'l +:”L2) dz .

. 2
\/m‘+12:-——1~ and de=—""5
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and conscquently,

Lo/ 4

which is mdjonad oz wd, having fonnd the imtegral in 2
) = el ?

;
cubstitute the value of 2z ters ol @
gl Lt s now conzider the case in which the coefli-

cient of 7 is negntive. We have

VA B — (€

7 \/(T // A I)J ,‘2
Vo b
B \/( \/(l Cla — st

1f now, we make as hefore,

NoEN .

and square both members, the secoml powers of @ each
menther will not cancel, as helore; amed thervefore, a can-
not be expressed rattonally in terins of z. We musl,
therefore, place the vidue of the radical under another
form.  We will renk, in the first place, that the bino-
minl @ i b =%, may be decomposed o two ratjonal

fuctors of the first degree. Por, i we make
at —- b — a2 0,

and designate the roots ol the equation by « and «/, we

have (Alu. Art. 1432)
(' — b — ) ==

w——a) (@ — o),

amd consequently, by changing the signg,

() (e @) = (2 — ) ()
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and placing the sceond member ander the radical, we

may make
Vet @ —n=—=7 (1)
squaring both members
) (o ) = ()2
and by suppressing the common factor @ — &

o —u={r— %) 2" (2)

whence,
o 4 a2
XTIy
1+z2
o 4w’
and o= e o %
142
or by reducing,
/
a —a
g — o = - (3)
_*, -

which, being substitited i the second member of equa-

tion (1), gives
V@*“W*OfT;iﬁ ()

and by differentiating equation (33), we obtain

269. To apply this method to @ particular example of

the form
dx

———_;—:/‘:‘,,
Va4 bx— o
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substitute the values of \/(l+(n'—— a* and dx, found n
equations (4) and (5): we find

v dr . Q(M/A__UL)Z' Jo — 9l ' .
‘ Vit e —a? (14- z'»f)v;@“f;;j‘) L 42"
1 4-2 |
hence
. [ 7
J = Qlang 'z 4 C;
\/f’ f //l — o

or, by substitnting for z its value from equation (1),
. dr Ly ‘/' .
/ - . e 2iang’ (k,,,,,,

VAT Y

,
C— 2tang ™! \/ .
L —

270, T, in the last formula, we make

a1 and b=20,

the winomial under the radical will become 1 - 2%, and

the roots of the cquation @ — [ =0 are
e —1 and & 1,

Substituting these values, and the general formula beconies

P L
/ ~~"~:‘ '_:_ = (o~ 2lang ™! \/ ]
- \/I R A

and if we suppose the integral 1o he 0 when @ =0, we

shall have
= (—2lang ' (1)
= —2(15H2)  (Prig. Art. VI
=C~90": hence €=
21

e
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Substituting this value, and we have
» da x ~1 1 —w
—— = L 2tang = .
\[l —a* 2 I

971. We have already seen (A1t 219) that

. dr Ly

— oS &y
V1—

x o . /1 —x
. — 2tang e
2 142

should also represent the arc of which @ is the sine.

To prove this, We have (Trig. Art. XXV)

and hence,

9tang A

PAF

tang2 A == Iafin e i
- 1 — wang A

Substituting for tang A, \/ T and reducing, we have
0

g2 A = —-

is equal

that ix, LWICE the are whose tanuent 1s \/

to the arc whose tangent 1%
But the arc whose tangent 15— is the com-

(Trig.

plcmcnt of the are whose tangent 15

Art. XVIID; and this are has @ for its sine. Henct

cither member of the equ.mon
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1—ao
14+’

(l.’l,‘ ka
—_— = — 2tang”
3 g

vi—a

represents the arc whose sign is .

1

979. Let us take, as a last example, the differential
dx v/ 2ax — 2*.

In comparing this with the general form, we find (Axt.
268)
«a=0 and & =2%a;

and Art. 268, equations (4) and (5), give

2az 4az
'\/.’L‘(Q(l/"{lf —— dm:—m)‘idz-

14+ 22’

Substituting these values, we have

—— 8a’2*dz
d.l“\/—gaa}—lw: —"——1—:*—_’2£)_‘4;

which may be integrated by the method of rational

fractions.

Rectification of Plane Curves.

273. The rectification of a curve is the expression of
its length. When this expression can be found in finite
terms, the curve is said to be rectifiable, and its length
may be represented by a straight line.

974. The differential of the arc of a curve, referred to
rectangular co-ordinates, is (Art. 128)

dz = Vda* + dy?,

/
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Hence, if it be regaired 1o recufy a curve, given by s
cyuation,

1st. Diﬂcrentiate the equalion of the curve.

ad. Combine the (li_[/'urcntia[ equation thus fuund with
the given equation, and find the value of dx* or dy®
terms of the other variuble.

3d. Substitute the value thus fm,uul. in the d::[]'«'renti,ul
of the arc, which will then involve but ot varinble and
its dljfcrent‘iul. Then, by integrating, e shall find the
length of the arc, estimated from d guen poiit, in terms
of one of uts co-ordinates.

275. Letus Lake, as a first example, the common paras

bola, of which the equation 13
Y =R pa
Differentiating, and dividing by 2 W¢ have
ydy = pda,
and consequently,

2
da? = *1-;—),“, dy*;

substituing this value in the differential of the arc, we

have

BERVTETE
P

which, being integrated by formule (B) Art. 239, gives,
1

by supposing "= 1, a=p> b=1, n=% P=



<
=
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= ]
jaVF A= Y B[
7

and integrating the second term by the formula of Art.

266, we have, after making h=p' =1

./.f'L[L:’ log(VP’+ ¢ +9);3

z:%fdf/\@"_f;i:v \//)14 2 + L 1og (VP +y+9)+C.

If we estimate the arc from the vertex of the parabola,
we shall have
y=0 for z=0: hence

0:—2—10gp+C or C:——];—logp;
L S

and consequently,

IR T 10g(vp Ty,

2p

and hence, the value of the arc, for a given ordinate y, can

only be found approximatively.
276. The curves represented by the equation
yﬂ — pxﬂl’
are called parabolas. This equation may be placed under

the form

ln
y=p z";
X m
or by placing p" =p/, and e n/, we have

y:p'w"';
4 B
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or finally, by omitting the accents, the form becomes

y = P.’I:".
By differentiating, we have
dy = npa" ' da

and by substituting s value of dy n the differential of

the arc, we have
1

z=[(1+ n”p%f“’“’z)"“ da.

Now this cxpression will have an exact integral when

1 . . e .
__~ is an ente pumber (Art. 235)- If we designate
n—2

such number by %, WC have for the condition of an exact

integral

which gives ne=——

substituting this value for n, we have

241
y=p %
or yﬁ:])ﬁxﬁn

which expresses the relation that cxists between ¥ and @
when the length of the arc can be found in finite terms.

o77. If we make i-=1, we¢have 7= %, and
y2 :]79 ws’

which is the cquation of the cubic parabola.
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Under this supposition, the are becomes (Art. 217)
1 3

! ) 9 >
= f(1 +wiptat THde = o (11 pte)” + O
) 4

o
27

and henee, the eubic parabola is rectifiable (Art. 273).
i we estimate the ave rom the vertex of the curve, we
have =20, for z=0: henee
o]

0= —— 4 C or €2 — —r ]
QTP 6 QT ’

and consequently,

o} s 9 i ] f
= Q’j’;;’Lkl '}* 71 7) .’l,')‘ —_ I‘I : .

278. If the origin of co-ordmales 1s at the centre of the

circle, the equation of the circumference 1s
) e
R =’ + s

and the value of the arc,

~  duw
T = R ——I—r_
v R g
If the origin be placed on the curve

Y= LR — o,

and z=~R

»

both of which expressions may be integrated by serics,

and the length of the are found approximatively. ;
279. It remains to rectify the transcendental curves. .
The diflerential equation of the cycloid is (Art. 182)

yih i
de = — k4

Vers 7
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which gives
., iy
dat = 12
Rry —Y
Substituting this value of da? i the differential of the

arc, we obtadn

T o
d= — \//1/": 4 ,,;i/ {,/»_I/,‘: =dy \/T_'/,'.l/_,f
i Ly — Yy Qry — Y

1
Fd

e (2/) (2"' l/)—— “[.]/

But (Art. 217)
Far— gy iy = 2 )
and hence,
e (enfayET Ty C= VI G

If now, wec estimale
the arc z from B, the

point at which =2,

we shall have, for z =0,
y=2r; hence A F M L
0=014C, or C=0,

and consequently, the truc integral will be

=2 \/z,(i,iG/—),
the second member being negative, since the arc is a
decreasing function of the ordinate y (Art. 31).

If now, we suppose y 1o deerease until it becomes
eq\lul to any ordinate, as D7 == ME, DB will be repre-
sented by 2, or by Vi (2r —yh and BE =2r—y.

But BG = BM ¥~ BE: hence

BG=V2r(@2r—y),
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and consequently,
BD =2BG;

or the arc of the cycloid, estimated from the vertex of the
axis, is equal to twice the corresponding chord of the
generating circle : hence, the arc BDA is equal to twice
the diameter BM ; and the curve ADBL 1is equal to four
times the diameter of the generating circle.

980. The differential of the arc of a spiral, referred to
polar co-ordinates, is (Art. 202)

dz = Vdu* + u’dP.
Taking the general equation of the spirals
u=atl’,
we have du? = nPa®t*"de;
and substituting for du? and #* their values, we obtain
dz = at*='dt Vn® + 2.

If we make n=1, we have the spiral of Archimedes,
(Art. 191), and the equation becomes

dz =adtv'1 +
which is of the same form as that of the arc of the com-
mon parabola (Art. 275).

981. In the logarithmic spiral, we have ¢=logu, and
the differential of the arc becomes

dz=duv2+ C;

and if we estimate the arc from the pole,

2z =uv2.
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Conscquently, the length of the are estimated from the
pole to any point of the curve, is equal to the diagonal of
a square described on the radius-vector, although the
number of revolutions of the radius-vector between these
two polnts 1s infinite.

Of the Quadrature of Curves.

ox2. The quadrature of a curve is the expression of its
arca.  When this expression can be found in finite terms,
the curve is said to be quadrable, and may be represented

by an cquivalent square.

983. If s represents the arca of the segment ol a curve,
and @ and y the co-ordinates of any point, we have scen
(Art. 130), that

ds == ydx

To apply this formula to a given eurve:

1st. Find from the cquation of the curve the value of 'y
in terms of x, or the value of dx tn terms of 'y, which
values will be expressed wunder the Jormns

y=F(x), or de=IF(y)dy.

od. Substitute the value of 'y, or the value of dx, in the

differential of the area: we shall have
ds = F(x)de, or ds=1(y)dy:

the integral of the first form will give the arca of the
curve in terms of the abscissa, and the integral of the

second will give the arca in terms of the ordinate.
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284, Let us take, as a first example, the family of para-

bolas of which the equation is

. I'wm

we shall then have
1 m

Y= ])7:a.7z

and
1
1 m o n mtn
s Lo Fx2 I n
[y - fpratdo=— Py = ay+ C;
v -+ 1 w4 n
1 m

by substituting  for its value, pra®

If, instead of substituting the value of 7 in the differential
of the area

yda,

we find the value of da from the equation

.y,
we have

——1
m
d’ "—7; 1 (l_’l/,
m
P
and consequently,
n
" , !
Ty /’ / noy n
oy == “thl o= Xy
Y = +n :; m4+n Y
1)
"
)y
by substituting @ for its value, =, which is the same re-
P"

sult as before found.

ence, the area of any portion of « parabola s equal

to the rectungle described on the ubscissa and ordinate
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L - . n \
wu/,[tvplw(l by the 1 o ———. The pumbolas arc there-

n 4 n
fore quadrable.

In the comion parabola, n=2, m=1, and we

have

\ 2

SF(@)de = =3
that is, the area of a segment is equal to two thirds of
the arvea of the rectongle described on the ubscissu and
ordinate.
985, If, in the cquation
Y = pal

we make n-=1, and m=1, it will represent a stringht
line passing through the origin of co-ordinates, and we

shall have
SF(a)de = }T ay,

which proves that the area of v trianele 1s equal to helf
the ]n’r)duct of the bese winld /)r.'y‘/;l‘/lrli('/l/ur.

ox. Tt is frequently necessary 1o find the integral or
function, between certain limits of the viriahle on which
it depends.

A ]):Lrli(;u]ﬂr notation lias heen adoptod to express such
mtegrals.

Resuming the erqralion of the comunon })le‘il,li(llll

. .
y" jod 'Jj)/l’,

and substituting in the equation yda the value of da = M,
we have
[yde = [ydy = Y c;
P ; 3p ’
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or, if the arca be estimated from the A
vertex A, we have € =0, and M//i
3 -
y .
yda =
Jy 3 /
If now, we wish the area to terminate — 4 g 17

at any ordinate PM = b, we shall then
take the integrid between the lins of y==0 and y=b;

and, to express that in the differential equation, we write

. 3
_L/ I 1/2(11/ . # :
pd 07 3p

which is read, integral of z*dy between the limits y =0

and y =0,
If we wish the arca between the ordinates MP =0,
M P =¢, we must integrate between the limits y = b,

y=c. We first integrate between 0 and each linit, viz. :

) 1 0. 3
AMDP = — *dy —
])./ 0 ¥y 31)’

i 1 ;¢ &
AMM P! =~ j 2y =L
pJ 0 vy 3p
we then have

PMAMP = AMM P — AMP = —v] e iy,
yuy
P b

3 g
. 7(,7 N ,,().,A . 1 —»((,‘3 . b?l).
3p dp 3p

287. Let us now determine the arca of any portion of
the space included between the asymptotes and curve of

an hyperbola.

22
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The equation of the hyperboli referred to Its asymp-
totes (An. Geom. Bl V1, Prop. 1X,) s

ayf M.

i the ditferential of the wea ol acurve yd, @ and ¥
are extimated 1 piuadicls o co-ordinate axes, at right an-
gles Lo cach other.

T'he diflerentind of the
arca BOAD, referred 1o /

the obligue  axes AN,

AY, is the paraliclogram -
PMAM P, of which /
PM—=vy and P v/ - — =K
: 7 C
1 we designate the /// SO
angle YAN = MPX 1y % S v

we shadl have
bl

aren PP - ydasing

L . . M .
and substituting for 4 s vidue -, and representing

the area BCMD by s, We have
o dx
ds = Msins S
NN

. WINT .
and s~ Mg / Meingloaa - O
. o
T AC s the copl-tmmsyense aswis of the \'_‘Jllt'rlml;\, and we
make A =1, andd estinade the arca s fram [0, we shall
have, for oo 1, s 0, and conseaprently (0 0; and the
true integral will be

s Alsimploga.
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But, since ABCD is a rhombus, and M = 4B x BC (An..

Geom. Bk, VI, Prop. IX, Scl,. 2), and since AR — 1, we
have a7 — 1, and consequently,

s =singloga.

Now, since s, whicl fepresents the space BOMP for any
abscissa a, s cqual to the Naperian logarithin of & multj.
plicd by the constint sing, ¢ may be regarded as the loga-
rithm of & taken in a system of which sing iy the modu-
lus (A lg. An. 251). Therefore, wny hyperbolic space
BCMP s 1pe logarithm of the corresponding  abscissq
AL, taken in the System whose modulus is the sine of the
ungle included bepween the asymptotes.,

I we would make 1he spaces the Naperian logarithms
of the corresponding abscissas, we make sIng = 1, which
corresponds to the cquilateral hyperbola. I we would
miake the spuces (he common logarithms of the abscissas,
make sing = 0.43429945, (Alg. Axt, 255),

288, The equation of the curele, when the origin of ¢o-

ordinates iy placed on the (:ir(:lnnlbrcncc, is

Y Qe a® or Y=V a2

and hence, the differential of the area is
de v Qo _ 4 ;
and this will hecome, by making o=y __ u,
L
— Sdu(r? — 7,

If we integrate fhis expression by formula (B) Axt. 239,
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we have

1 L 1, .
— —2—u(72—— uyr — —z—rzfdu('lz—u‘) 2

I

— fdu(r*— u”)%

1 ; . 1 « —du
g - r& .4 2 .
——2uv —u +-27 T

But we have (Art. 253)

—d o
e ()

and placing for u its value

Jdux Vg —at =

r—a

>+C;

r

1 2 ] 2.1
—‘2—-(7‘—-"[)\/27"1——.1 +§I Cos (

and taking this integral between the limits 2= 0 and
x=2r, we shall have the arca of w semicircle.

Tor a=0, the area which is cxpressed i the first
member becomes 0, the first tern in the sceond member
becomes 0, and the sccond termi alxo becomes 0, since

the arc whose cosine is 1, is 0: hence the constant

C=0.

If we now make 2=2r, thetenu
‘—1~ (r — =) 2 —

5 )y 2 — 2
reduces to 0, and the second term to

%wmfx_n:%ﬂw(h@Amxwx

and consequently, the entire arca is cqual to 7*x, which
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corresponds with a known result (Geom. Bk, Y, Prop. X11,
Cor. 2).

The equation of the ellipse, the origin of co-ordi-
nates being at the vertex of the transverse axis (An. Geom.

Bk. 1V, Prop. 1. Sch. 8), gives
BBV P
A

and consequently, the arca of the semi-cllipse will he

equal to
nor R
Syde= T de vV 2Ax—a”.
Integrating, as in the Jast cxample, between the limits
2=0, and =24, and multiplying by 2, we find AB~

for the entire arca.  This corresponds with a known result

(An. Geom. Bk. 1V, Prop. XI1I).

959, ‘T'he differential equation of the cycloid (Art. 183) 18

1/27’/ _/
whence
Syde =
1/2ry y

and by integrating twice by formula (E) Art, 243, it will

t
reduce to j ‘ I/._#; and (Art. 226)
zry y

f (]7/ o ver-sin""<l\.
\/ZII/ — ,/ r/

But we may determine the arca of the cyc]md in a more

simple manner by introducing the exterior segment ALKH,
‘)z *
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Regarding F'B as a1 K

line of ubscissus, and 1

sighating any orditate as \/‘
Kl by z-.¢ —N— L

20- -y, We

shull have
A ALK 2
But

Qg / S
zdw == (__L Py dy/ 2ry — 4
\/Z/_/ — " ’

whence
AFKH = [dyV 2y —y* 1+ €.

But this integral expresses the aren of the segment of a
circle, of which the abscissa 1s ¥ and radius r (Art. 288):
that is, of the segment MIGE. If now, we estimate the
area of the segment from M, where y 0, and the area
AFKH from AF, in which case the arca AFKH =0 for
y=0,we shall have

AFPKII =MIGE;
and taking the integral betwecn the limits ¥y =0 and
y =2r, we have

AFB = scmicircle MIG B,

“and consequently,

aren AHBM = AFBM — MIGB.

But the base of the rectangle AFBM is cqual to the semi-
circumference of the generating circle, and the altitude s
equal to the diameter, henee its arca is equal to four umes

the area of the semicircle MIGE ; therefore,

arca AHBM = 3MIGH,
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and consequently, the wrea ANBLL i equal to teree times
the aree of the generating crele.

990, 1t now rentains to detenuine the arca of the spirals.
If we represent by s the arca deseribed by the radius-vee-
tor, we have (Art. 203)

e

oy = — >

(2
~

and placing for u its value al® (Art. 189)

2 gg2ngl

@Erde 't .

ds =v ———" and s + C,
2 An+2

and if w15 positive (= 0, since the arcu 15 0 when ¢=0.

After one revolution of the radius-vector, &= 927, and we
have
B (/2(2'#)”“'“
442

which is the area included within the first spire.

291. In the spiral of Archimedes (Art. 192)

w=—  and n=1;
L
henee, for this spiral we have .
e
T g

. w . 3
which becomes L after one revolution of the radius-

. ki3 .
vector; the unit of the number v being a square whosae
side 1s unity. Hence, the arca included by the first spire,
1s equal to one third the area of the circle whose radius I8
equal to the rudius-veetor after the first revolution.

In the sccond revolution, the mdius-veetor describes a




7

i

260 ELEMENTS OF THE

second time the area deseribed in the first revolution ; and
in any revolution, it will pass over, or redescribe, all the
arca before generated.  Hence, 1o find the wrea at the end
of the th revolution, we must integrate between the limits

t=(m—1)27 and [=m.2=

which gives
3 V3
— (11— 1
m = (1)
3
If it be required to find the arca between any two spires,
as between the mth and the (m + Dih, we have for the
whole area to the (m 4+ 1ith spire equal to
(m 4 1) —
ha e w
3 ’

and subtracting the arca to the mth spire, gives

(4 1Y —2m® + (m — 1)*
3

w = 2w,

for the area between the mth and (m + 1)th spires.

If we make 2t = 1, we shall have the area between the
first and second spires equal to 2 hence, the urea be-
tween the mth and (i + 1)th spives, is equal to m tunes
the areu between the first and second.

292. In the hyperbolic spiral = — 1, and we have
2t-—2 2
ds:a dt and S:‘—L.
2 28

The area s will be infinite when ¢ =0, but we can find
the area included between any two radius-vectors b and ¢
by integrating between the Hmits ¢ = b, ¢ .=¢, which will

rﬁ(l 1)
S — — ),
2\ b [

give
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du

293. In the logarithmic spiral ¢ =logw: hence, dt =—,
u

widt  uduw
— = ;

wdu  v*

,_+C

hence, s=

and by considering the arca s =0 when u =0, we have

C=0 and
wt
= .

4

Determination of the Area of Surfaces of

Revolution.

294. If any curve BMM', be re-
volved about an axis AX, 1t will de-
scribe a swlace of revolution, and
every plane passing through the axis
AX will interscet the surface in o me-
vidian carve.  Ttis required to find the
differential of this surface.  For this

M
/
M~
>~
B
A P P X
h : we shall

purpose, make AP =, I’IW y, and PP =

then have
Pﬂ[ = F(’l‘) =1,

PM = F(w+h)_1+dj ht =L

(I"'yh
dz*1.2

4 &e.
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+

. Intherevolution of the curve BMM’,
“the extremities M and M’ of the ordi- M|

s nates MP, M'P', will describe the cir-

" cumferences of two circles, and the
chord MM will describe the curved
surface of the frustum of a cone, The
surface of this frustum is equal to ~ 4 P P X
(Geom : Bk. VIII, Prop, IV.)

(ctre. MP + cire. M' P

2

(2% MP 2x M 1)
2

X chord MM’ : that is, to

X chord MM'= = (MP 4+ M P') X chord MM';
and by substituting for M, M’ P’ their values, the expres-
sion for the area becomes

1y Fy b
(gy + ¢ Jh ¢ ',/ 110 + &ec. ) chord MM,

If now we pass 1o the limit, by making % =0, the chord
MM will become equal to the are MM’ (Art, 125), and the
surface of the frustum of the cone will coincide with that

2
+

of the surface described by the curve at the point M. If we
represent the surface by s and the arc of the curve by 2,
we have, after passing to the limit,

ds = 2wyde,
and by substituting for dz its value (Art. 128), we have
ds =2~y \/dié_:fv_(ljzj‘ :

whence, the differential of a surfuce of revolution is equal

to the circumference of a circle perpendicular to the axis,
into the differential of the arc of the meridian curve,
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-
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‘ " INTEGRAZ CALCTLys, 26
Remari, 14 should be observed g, Xis the axjs about
Which {he curve jy revolved, pp WEre revolyed about
the axig ¥, it wonlg be NeCessary (o change 4 o 3 and’
' C Y into g, '
i
295 11 right angled triangle (4 g3 be revolyeq abouyt
- the perpendieyy, CA, the hyp()l.hl:ﬂllS(: CB wi deseribe
' e surfiee of 4 tight copg. I we represent thy base f34
d k ol the trianpl, by 4, the altivude ¢4 by %, and Suppose
the origin of Co-ordinarey 1y the verey ol the angle € we
shall Ly
YLy hoy. henee
Yo .//:7 and »//Ili(lm.
’ Subslituliug these valney of y ang dy,
! M, we haye

in the general for-

. o 2 b g lia? it
! S REyd ey Se 7:"/1)) da Vit 4% 71'~}i— 1//?-[_ P4 C,
L (2
and inl('gr;ujng Detweey, the

limits =0 and g hy we
obtui . -
Y
surfuce of ), CONC == 74y (/75 T+ =2, % @
Y
= (:[1'(:.~/IB X —(1£ -
294,

Il 5 reclangle ARy .,

revolved aroyng the sjde
AD, we ean readily find )y, Surfuce of he right Cylin(icr
which will 1o deserihe by the side bo,
. Let uy

Nll{)})()ﬁ(f

the iy AI):://,
‘ Cqnation of .
i

line per will
SCovalie
diﬂ'crcmi:l] of the

andyt B, the
hegce, dy =0,

neral cxpressic)n"?of the
we lave - .
ffbr// \/(/;fr:/// = [ Qa by =2xbay 4. C,'

I)O !/:‘[)
500 tlie ae
surlace,

thstilulin;{ the
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and taking the integal butween i dits ar=0, =,

e oy W Juve

arface = Qabh - e AD » AD.

11 . - -

oy To find the surfo v of & sphere, et us take the
equation of the meridinn curve, selerred 1o the centre as
an orign ;11

;;;1" l I/ - Il‘lt:)s
and by ddferentating, we have
ada 7/4/»1/ Sl VI

hence
3 ll . | 37' / ‘)2
(l’i/ il e— ,l{ — ;”“[ l/l/' . ) "‘I”
‘ Y : e
Substituting for «/y s vadue, o the dilferential ol the
surface _
Lo ey VA,

we obtam

. T u
$ :;[@,ﬂ’y ‘\/(/1'~ ﬁll/ ot _/.2:: Ril:r g R + (.
|

TIi we estimate the surface from the plane passing through

& contre, and perpendicular to the axis of 4, we shall

Lave
s =0 for a=0, and consequently . 0.
“‘V.
Nuw, to find the entirc surfauce of the =pliere; we must
integrate be&weén the lindis o oo I and - R, and

then take the sum of the intevrals without reference to
their ulgebraib signs, for these signs only mdicate the po-

' sitf‘ofgfof the paﬁs of the stefice with respoct to the plane

passing through the centre of the sphere.

-




